PROPUESTA DE UN SISTEMA DE ALUMBRADO EXTERIOR PARA EL CAMINO PERIFÉRICO EMPEDRADO DE LA ZONA ARQUEOLÓGICA DE TEOTIHUACÁN POR MEDIO DE TECNOLOGÍA LED ALIMENTADO POR PANELES FOTOVOLTAICOS

PROYECTO TERMINAL:

QUE PARA OBTENER EL TÍTULO DE INGENIERO ELECTRICISTA.

P R E S E N T A

ARTURO CRUZ GÓMEZ

GABRIELTONATIUH PÉREZ ARAGÓN

ASESORES:

M. en C. DAVID HERNANDEZ LEDESMA

M. en C. ISABEL ALBARRAN CARMONA

MÉXICO, D. F. 2015
INSTITUTO POLITÉCNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA
UNIDAD PROFESIONAL “ADOLFO LÓPEZ MATEOS”

TEMA DE TESIS

QUE PARA OBTENER EL TÍTULO DE
POR LA OPCIÓN DE TITULACIÓN
DEBERA (N) DESARROLLAR

INGENIERO ELECTRICISTA
TESIS COLECTIVA Y EXAMEN ORAL INDIVIDUAL
C. ARTURO CRUZ GÓMEZ
C. GABRIEL TONATIUH PÉREZ ARAGÓN

“PROPUESTA DE UN SISTEMA DE ALUMBRADO EXTERIOR PARA EL CAMINO PERIFÉRICO EMPEDRADO DE LA ZONA ARQUEOLÓGICA DE TEOTIHUACAN POR MEDIO DE TECNOLOGÍA LED ALIMENTANDO POR PANELES FOTOVOLTAICOS”.

DESARROLLAR UNA PROPUESTA DE UN SISTEMA DE ILUMINACIÓN EXTERIOR PARA EL CAMINO PERIFÉRICO EMPEDRADO DE LA ZONA ARQUEOLÓGICA DE TEOTIHUACAN MEDIANTE LUMINARIAS DE TIPO LED ALIMENTADAS POR PANELES FOTOVOLTAICOS.

♦ MARCO TEÓRICO
♦ ALUMBRADO PÚBLICO
♦ ESTUDIO TÉCNICO
♦ ESTUDIO ECONÓMICO

ASESOR

M. EN C. DAVID HERNÁNDEZ LEDESMA

ING. CESAR DAVID RAMÍREZ ORTÍZ

ING. CESAR DAVID RAMÍREZ ORTÍZ
JEFE DEL DEPARTAMENTO ACADÉMICO DE
INGENIERÍA ELÉCTRICA

ESTADOS UNIDOS MEXICANOS
JEFATURA DE
INGENIERÍA ELÉCTRICA
DEDICATORIA

El término de este trabajo representa la culminación de una magnífica etapa de mi vida y marca el comienzo de una nueva, en la cual se ve reflejado el esfuerzo y arduo trabajo que se invirtió no solo por mí si no por todas aquellas grandes personas que me brindaron su apoyo incondicional en este lapso de mi vida, por eso quiero dedicar este trabajo a:

A mi padre, por estar siempre en los momentos más importantes de mi vida, por ser el ejemplo para salir adelante y por esos consejos que han sido de gran ayuda en mi vida y crecimiento. Esta tesis es el resultado de lo que me has enseñado en la vida, ya que siempre has sido una persona honesta, entregada a tu trabajo, y un gran líder, pero más que todo eso, una gran persona que siempre ha podido salir adelante y ser triunfador. Es por ello que hoy te dedico este trabajo.

A mi madre, por ser la amiga y compañera que me ha ayudado a crecer, gracias por estar siempre contigo en todo momento. Gracias por la paciencia que has tenido para enseñarme que en la vida nada es fácil pero nada es imposible, por el amor que me das, por tus cuidados en el tiempo que hemos vivido juntos, por los regaños que me mereces y que a veces no entendía, perdóname por tantos desvelos por tantas preocupaciones que te ocasionaba. Gracias mamá por estar al pendiente durante toda mi vida. Es por ello que hoy te dedico este trabajo. Gracias por confiar en mí y darme la oportunidad de culminar esta etapa de mi vida.

A mi hermana Nayeli, su esposo Arcel, y mis sobrinos Jonathan y Andrea. Que con su amor me han enseñado a salir adelante. Gracias por la paciencia, gracias por preocuparte por mí, gracias por compartir sus vidas, pero sobre todo, gracias por estar en otro momento tan importante en mi vida.

A Ivone mi futura esposa, gracias por permitir que formara parte de tu vida, gracias por tu amor, gracias por ser como eres, gracias por ser la mujer con los mejores sentimientos que he conocido, gracias por presionarme para terminar este trabajo, gracias por ayudarme cuando ya no podía más, gracias por aguantarme, pero sobre todo gracias por enseñarme a creer en mí y motivarme a hacer las cosas de la mejor manera.

A la familia Ramos Pérez, a mi tía Elena y mi tío Manuel, por apoyarme cuando lo necesitaba. Gracias por compartir buenos momentos y una más que es esta etapa tan importante en mi vida.

Atte. Cruz Gómez Arturo
DEDICATORIA.

A mi padre.
Por darme las herramientas y los consejos que me han hecho llegar hasta donde me encuentro, por los sermones y comentarios que fueron necesarios para mostrarme el camino.

A mi madre.
Por estar a mi lado en los momentos donde necesitaba de ti, por darme la confianza y la certeza de que siempre estarás a mi lado. Te amo.

A mis abuelos.
Por estar siempre al pendiente de mis estudios y de mí, por apoyarme cuando lo necesitaba, por los consejos y recaídos, pero sobre todo por su compañía y cariño.

A mi tío Jonathan David.
Por estar a mi lado en el trayecto de esta vida, por brindarme su ayuda siempre que lo necesito

A Alma Rosa.
Por estar a mi lado y darme tu apoyo durante esta etapa de mi vida, por creer en mí, por darte parte de tu tiempo y cariño.

Atte. Pérez Aragón Gabriel Tonatiuh
<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>TÍTULO</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>VIALIDADES</td>
<td>20</td>
</tr>
<tr>
<td>1.2</td>
<td>ASPECTOS RELATIVOS DE ILUMINACIÓN EN ALUMBRADO PÚBLICO</td>
<td>21</td>
</tr>
<tr>
<td>1.3</td>
<td>RECOMENDACIONES PARA EL DISEÑO DE SISTEMAS DE ALUMBRADO PÚBLICO</td>
<td>21</td>
</tr>
<tr>
<td>1.4</td>
<td>SISTEMA DE ALUMBRADO PÚBLICO CON ENERGÍA SOLAR</td>
<td>22</td>
</tr>
<tr>
<td>1.5</td>
<td>ALUMBRADO PÚBLICO</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>DESCRIPCIÓN DEL SITIO</td>
<td>2</td>
</tr>
<tr>
<td>1.7</td>
<td>IMPORTANCIA</td>
<td>1</td>
</tr>
<tr>
<td>1.8</td>
<td>HISTORIA DEL SITIO</td>
<td>1</td>
</tr>
<tr>
<td>1.9</td>
<td>ORÍGENES DE SU NOMBRE</td>
<td>1</td>
</tr>
<tr>
<td>1.10</td>
<td>PARTES DE UNA LUMINARIA LED</td>
<td>18</td>
</tr>
<tr>
<td>1.11</td>
<td>ZONA ARQUEOLÓGICA DE TEOTIHUACÁN</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>ALUMBRADO PÚBLICO CON ENERGÍA SOLAR</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>EFECTO FOTOVOLTAICO</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>MÉTODO POR TANTEO O ESTIMACIÓN POR EL MÉTODO DE LUMEN</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>TIPOS DE SISTEMA</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>MANTENIMIENTO A LOS PANNELES FOTOVOLTAICOS</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>INCLINACIÓN QUE DEBE TENER UN PANEL FOTOVOLTAICO</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>PRINCIPIO DE FUNCIONAMIENTO DE UN PANEL FOTOVOLTAICO</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>TIPOS DE SISTEMA</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>CÁLCULO DE ILUMINACIÓN PARA EXTERIOLES</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>LED</td>
<td>11</td>
</tr>
<tr>
<td>2.11</td>
<td>CURVAS FOTOMÉTRICAS</td>
<td>7</td>
</tr>
<tr>
<td>2.12</td>
<td>COLOR</td>
<td>7</td>
</tr>
<tr>
<td>2.13</td>
<td>CURVAS FOTOMÉTRICAS</td>
<td>6</td>
</tr>
<tr>
<td>2.14</td>
<td>INTENSIDAD LUMINOSA</td>
<td>6</td>
</tr>
<tr>
<td>2.15</td>
<td>RENDIMIENTO LUMINOSO</td>
<td>6</td>
</tr>
<tr>
<td>2.16</td>
<td>LUMINANCIA</td>
<td>5</td>
</tr>
<tr>
<td>2.17</td>
<td>LUMINANCIA</td>
<td>5</td>
</tr>
<tr>
<td>2.18</td>
<td>CLASIFICACIONES DE LÁMPARAS</td>
<td>9</td>
</tr>
<tr>
<td>2.19</td>
<td>PARTES DE UNA LUMINARIA LED</td>
<td>18</td>
</tr>
<tr>
<td>2.20</td>
<td>RECOMENDACIONES PARA EL DISEÑO DE SISTEMAS DE ALUMBRADO PÚBLICO</td>
<td>21</td>
</tr>
<tr>
<td>2.21</td>
<td>SISTEMA DE ALUMBRADO PÚBLICO CON ENERGÍA SOLAR</td>
<td>22</td>
</tr>
<tr>
<td>2.22</td>
<td>ALUMBRADO PARA EXTERIOLES</td>
<td>29</td>
</tr>
<tr>
<td>2.23</td>
<td>TIPOS DE DISTRIBUCIÓN SEGÚN LA NOM-013-ENER-2013</td>
<td>27</td>
</tr>
<tr>
<td>2.24</td>
<td>NOM-031-ENER-2012</td>
<td>24</td>
</tr>
<tr>
<td>2.25</td>
<td>NOM-013-ENER-2013</td>
<td>25</td>
</tr>
<tr>
<td>2.26</td>
<td>PLANTEAMIENTO DEL PROBLEMA</td>
<td>II</td>
</tr>
<tr>
<td>2.27</td>
<td>OBJETIVOS ESPECÍFICOS</td>
<td>IV</td>
</tr>
<tr>
<td>2.28</td>
<td>OBJETIVOS GENERAL</td>
<td>IV</td>
</tr>
<tr>
<td>2.29</td>
<td>OBJETIVOS ESPECÍFICOS</td>
<td>IV</td>
</tr>
<tr>
<td>2.30</td>
<td>PLANTEAMIENTO DEL PROBLEMA</td>
<td>II</td>
</tr>
<tr>
<td>2.31</td>
<td>RESUMEN</td>
<td>I</td>
</tr>
<tr>
<td>2.32</td>
<td>RESUMEN</td>
<td>I</td>
</tr>
<tr>
<td>2.33</td>
<td>ÍNDICE</td>
<td>i</td>
</tr>
</tbody>
</table>
El trabajo presente se realizó en la zona arqueológica de Teotihuacán, tomando únicamente el camino periférico el cual tiene una longitud de 6655 m., mismo que carece de iluminación a pesar de ser un área para actividad turística.

El proyecto propuesto busca incorporar la tecnología LED, ya que es energía limpia en el uso de alumbrado exterior en zonas de regímenes estrictos, además que se busca reducir los niveles de contaminación por CO$_2$ producidos por la generación de energía eléctrica, por lo que se buscó un luminario de dicha tecnología alimentado mediante paneles fotovoltaicos.

En el trabajo se hace referencia a los sistemas fotovoltaicos, a los principios de alumbrado exterior y a las normativas que rigen dichos sistemas, las cuales tratan de la eficiencia energética para sistemas de alumbrado en vialidades (NOM-013ENER-2013) y a la eficiencia energética para luminarios con diodos emisores de luz destinados a vialidades y áreas exteriores públicas. (NOM-031-ENER-2012).

Se realiza el Estudio de Iluminancia de acuerdo a la norma que regula los sistemas actuales de Alumbrado Exterior arrojando los resultados para realizar un sistema de alumbrado exterior eficiente.

Para terminar el trabajo se realizó un estudio económico, el cual desglosa los gastos involucrados en el proyecto, dando obertura a una comparación de tecnologías obteniendo el resultado más óptimo.
PLANTEAMIENTO DEL PROBLEMA

Actualmente el camino periférico empedrado de la zona Arqueológica de Teotihuacán cuya longitud es de 6,655m carece de iluminación debido a que no se cuenta con una red de suministro eléctrico en sus caminos de entrada así como en su periferia; no es posible escarbar en el sitio ya que el Instituto Nacional de Antropología e Historia (INAH) no lo autoriza puesto que es una zona arqueológica de investigación, por tales motivos no se otorga el permiso para la instalación de una red aérea o subterránea (ver anexo A) desembocando en niveles elevados de inseguridad y de siniestros automovilísticos.
Teotihuacán actualmente es conocida como el segundo centro turístico más visitado de la República Mexicana y reconocido por la UNESCO como patrimonio cultural universal, desde 1987 forma parte de la lista indicativa de patrimonio mundial. Por lo que es importante que cuente con una iluminación eficiente.

En este trabajo se pretende realizar una propuesta para iluminar el camino periférico empedrado de la zona arqueológica de Teotihuacán, mediante luminarios de tipo LED enfocado a electrificar cada luminario utilizando paneles fotovoltaicos; dando cumplimiento con los requerimientos indicados por el INAH para no deteriorar la zona.

Con base en lo anterior se realizará una propuesta de iluminación con sistemas autónomos (paneles fotovoltaicos) con luminarios de tecnología LED apoyados en una base realizada a las especificaciones requeridas para no escarbar (ver anexo A), logrando así una iluminación eficiente.
OBJETIVOS

OBJETIVO GENERAL
Desarrollar una propuesta de un sistema de iluminación exterior para el camino periférico empedrado de la zona arqueológica de Teotihuacán mediante luminarias de tipo LED alimentadas por paneles fotovoltaicos.

OBJETIVOS ESPECÍFICOS

- Identificar los aspectos geográficos del camino donde se pretende realizar el diseño e instalación del sistema de iluminación.
- Realizar el estudio económico del proyecto.
CAPÍTULO 1
MARCO TEÓRICO
1.1 ZONA ARQUEOLÓGICA DE TEOTIHUACÁN

1.1.1 ORÍGENES DE SU NOMBRE
(Náhuatl: Teotihuacán, «Lugar donde fueron hechos los dioses; ciudad de los dioses») Este nombre se le da a la que fue una de las mayores ciudades de Mesoamérica en la época prehispánica. El topónimo proviene del náhuatl y fue utilizado por los mexicas, pero no se conoce como era nombrado por sus habitantes. (CONACULTA, 2013-2015)

1.1.2 IMPORTANCIA
Teotihuacán fue uno de los centros urbanos más grandes del mundo antiguo, tanto que llegó a concentrar una población mayor a los 100,000 habitantes en sus mejores momentos. Localizada en un lugar de grandes riquezas naturales, Teotihuacán era la sede del poder de una de las sociedades mesoamericanas más influyentes en los ámbitos político, económico, comercial, religioso y cultural, cuyos rasgos marcaron permanentemente a los pueblos del altiplano mexicano, traspasando el tiempo y llegando hasta nosotros con la misma fuerza y grandeza con que sus constructores la planearon.

La zona arqueológica es visitada cada año por miles de personas, haciendo del sitio uno de los mayores polos de atracción turística del país.

El reconocimiento del sitio como patrimonio cultural es universal, pues desde 1987 forma parte de la lista de Patrimonio Mundial de la UNESCO. (CONACULTA, 2013-2015)

1.1.3 HISTORIA DEL SITIO
En Teotihuacán se realizaron dos proyectos de los más importantes del país y un megaproyecto en la década de los 90´s por el gobierno federal:

♣ “Teotihuacán 1962-1964”
♣ “Teotihuacán 1980-1982”
Toda investigación en el sitio es permanente e interdisciplinaria, pues prácticamente todas las disciplinas antropológicas encuentran temas de trabajo en el sitio, el cual es objeto de estudio tanto por instituciones académicas nacionales como internacionales.

Teotihuacán se ha convertido en un estandarte para los mexicanos en la defensa y resguardo del Patrimonio Cultural Nacional, su monumento principal ícono de la identidad nacional, la Pirámide del Sol. (CONACULTA, 2013-2015)

1.1.4 DESCRIPCIÓN DEL SITIO
La zona arqueológica de Teotihuacán tiene una extensión de 264 hectáreas, donde se encuentran las pirámides del Sol y la Luna, el templo de Quetzalcóatl “Templo de la Serpiente Emplumada”, La Ciudadela, la Calzada de los Muertos, el Palacio de Quetzalpapálotl y 4 conjuntos departamentales con importantes ejemplos de pintura mural, como son Tetitla, Atetelco, Tepantitla y La Ventilla, además de otros 2 conjuntos de corte habitacional denominados Yayahuala y Zacuala.

La entrada a la zona puede realizarse por 5 puertas, distribuidas e interconectadas por un camino periférico empedrado que circunda el área monumental, además hay caminos vecinales que la comunican con los conjuntos habitacionales mencionados. (CONACULTA, 2013-2015)

1.1.5 UBICACIÓN GEOGRÁFICA
La zona arqueológica de Teotihuacán está situada a unos 30 kilómetros al noreste de la Ciudad de México en la Cuenca de México (Estado de México) entre los poblados de San Juan Teotihuacán y San Martín de las pirámides.

Fue construida en un valle surcado por el río San Juan, que desembocaba en el lago de Texcoco, cuya superficie en la actualidad se encuentra sumamente reducida. Este valle está rodeado por la sierra de Patlachique al sur y los cerros Gordo y Malinalco al norte. Posee un desagüe natural hacia el vaso de Texcoco por el suroeste. El valle de Teotihuacán se encuentra a una altitud de entre 2240 y 2350 msnm, es decir, asciende desde una cota similar a la del nivel de la Ciudad de México en el extremo suroeste del valle hasta unos cien metros más, al noreste, cerca de Otumba. Ver figura 1.1 para identificar su ubicación en el mapa. (INAH)
1.2 SISTEMAS DE ILUMINACIÓN

Se le conoce como sistema de iluminación a aquel que está integrado por elementos que operan en conjunto para transferir cierta cantidad de luz, de tal manera este iluminará un área determinada. En este sistema todos los equipos de alumbrado se agrupan de tal forma que se alcance un nivel de iluminación adecuada y suficiente según su necesidad.

Según Donald Glen Fink: "Un sistema de alumbrado local y general consta de un arreglo funcional de luminarias con respecto al trabajo visual o zona de trabajo".

1.2.1 ILUMINACIÓN

Se define como el flujo luminoso por unidad de superficie, se designa con el símbolo "E" y se mide en Lux, se puede observar en las ecuaciones 1.1 y 1.2 (Enríquez Harper, Gilberto, 2007)

\[
Lux = \frac{\text{lumen}}{m^2} \quad (1.1)
\]

\[
E = \frac{\text{flujo luminoso}}{\text{Unidad de superficie}} \quad (1.2)
\]

Se puede decir también que la iluminación de una superficie es el flujo luminoso que cubre cada unidad de la misma, en la figura 1.2, se puede observar como el flujo luminoso (lumen) incide sobre la unidad de medida al cuadrado (m²) y la cantidad de luz que la superficie emite al entorno (Lux).
La iluminación es el principal dato de proyecto para una instalación de alumbrado y se puede medir por medio de un instrumento denominado luxómetro, como una idea para orientar respecto a los valores de iluminación.

1.2.2 FLUJO LUMINOSO

Es la medida de la potencia de luz emitida por una fuente luminosa, ésta difiere del flujo radiante que es la potencia total emitida la cual está ajustada para reflejar la sensibilidad del ojo humano a diferentes longitudes de onda. Su unidad es el lumen, se define a partir de la candela como se indica en la ecuación 1.3.

\[
lm = cd \ast sr
\]

El flujo luminoso se obtiene ponderando la potencia por cada longitud de onda con la función de luminosidad, esto representa la sensibilidad del ojo en función de la longitud de onda, en la figura 1.3 se muestra el flujo luminoso sobre una superficie de 1m y 1m².
1.2.3 ILUMINANCIA

Iluminancia es indicada como la cantidad de luz que manda algo hacia el entorno, se puede medir desde cualquier distancia, siempre y cuando lo que queremos medir este dentro del encuadre del luxómetro.

Su unidad en sistema internacional es el lux (Ix), el cual está definido como un lumen sobre una unidad del sistema métrico (metro) al cuadrado, como se observó en la ecuación 1.1.

\[
Lux = \frac{\text{lumen}}{m^2}
\]

1.2.4 LUMINANCIA

La luminancia también conocida como brillantes así como la intensidad luminosa es emitida en una dirección determinada por una superficie luminosa o iluminada (fuente secundaria de luz). Esto quiere decir que expresa el efecto de la luminosidad que una superficie produce sobre el ojo humano, ya sea fuente primaria (lámpara o fuente de iluminación) o secundaria. Se expresa como “L” y se mide en candelas/m², para su mejor compresión se puede ver en la figura 1.4. (Hernández David, 2014).
1.2.5 INTENSIDAD LUMINOSA.
Se define como la cantidad fotométrica de referencia. Su unidad es la candela (cd), cuyo patrón es una superficie de 1.66 mm² de platino, llevando a la temperatura de fusión que es de 1760°C (2042 K).

Con referencia a la candela, el lumen se define como el flujo luminoso emitido en el interior de un ángulo sólido de 1 estereorradián (28.6 grados sólidos), por una fuente puntiforme igual a 1 candela para comprender esto, se puede agregar que una fuente luminosa que emite 1 candela en todas las direcciones (360° sólidos) proporciona un flujo luminoso de $4\pi = 12.57$ lumen como se muestra en la ecuación 1.4. (Enríquez Harper, Gilberto, 2007)

\[I = \frac{Energía de luz}{Ángulo sólido} \quad (1.4) \]

1.2.6 RENDIMIENTO LUMINOSO.
El rendimiento luminoso o coeficiente de eficacia luminosa de una fuente de luz, nos indica el flujo que emite la misma fuente por cada unidad de potencia eléctrica consumida para su obtención. El rendimiento luminoso se representa por la letra minúscula en griego “η” (eta), siendo su unidad el lumen por watt (lm/W). Como se expresa en la ecuación 1.5.
\[\eta = \frac{\phi}{\omega} \] (1.5)

1.2.7 CURVAS FOTOMÉTRICAS

La fotometría es la ciencia que se encarga de la medición de la intensidad de la luz percibida por el ojo humano y la curva fotométrica la herramienta gráfica que proporciona la información necesaria para la correcta selección de luminarias para un determinado espacio. Mediante la curva fotométrica de un manantial se puede determinar con exactitud la intensidad luminosa en cualquier dirección, “las curvas fotométricas se dan referidas a un flujo luminoso emitido de 1000 lúmenes y, como el caso más general es que la fuente de luz emita un flujo superior, a los valores de la intensidad luminosa correspondientes se hallan mediante una simple relación” (J. A, 2008)

1.2.8 COLOR

El color no es una característica propia de los cuerpos, ya que el cerebro realiza una interpretación de las radiaciones electromagnéticas que inciden sobre estos, ya que; los cuerpos reflejan, transmiten o absorben estas radiaciones, las cuales el ojo es capaz de percibir por ello dependiendo de la utilización y el efecto decorativo que se desea es el color de la luz y la luz de la superficie.

El color que presentan las lámparas se encuentra determinada por su temperatura de color, dentro de las cuales vienen clasificadas en luz fría con tonalidad azul, luz neutra que presentan una tonalidad blanca y la luz cálida que presentan una tonalidad blanca rojiza (Hernández David, 2014)

1.2.8.1 TEMPERATURAS DE COLOR

Por lo general una fuente luminosa se describe de acuerdo a una temperatura de color, en el Manual de Iluminación IES menciona que la temperatura de color, es la que describe la cromaticidad de una fuente completamente radiante, la cual generalmente se utiliza en trabajos de iluminación. Dentro de este manual de iluminación se menciona que todo cuerpo es de color negro a una temperatura ambiente, ya que no emite radiación visible para el ojo humano, cuando tienen una apariencia rojiza alcanzan una temperatura dentro de los 800 K a los 900 K, aquellas fuentes luminosas que tienen un aspecto amarillo, se encuentran alrededor de los 3000 K,
mientras que la luz blanca, la que se considera neutra se encuentra en los 5000 K, el azul débil se encuentra dentro de los 8000 K y los 10000 K, mientras que el azul brillante con apariencia al azul del cielo tiene una temperatura entre los 60000 K y los 100000 K, estas temperaturas que presenta un cuerpo negro las define la ley de Planck. Ver la tabla 1.1 y tabla 1.2 donde se muestran ejemplos de las tonalidades que se obtienen a cada temperatura.

<table>
<thead>
<tr>
<th>Tabla 1.1</th>
<th>Temperatura de color en °kelvin (recuperado el 15 de enero 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Temperatura de color</td>
</tr>
<tr>
<td>Rojo</td>
<td>2.000 K</td>
</tr>
<tr>
<td>Anaranjado</td>
<td>2.800 K</td>
</tr>
<tr>
<td>Amarillo</td>
<td>3.200 K</td>
</tr>
<tr>
<td>Amarillo claro</td>
<td>4.000 K</td>
</tr>
<tr>
<td>Marrón</td>
<td>5.000 K</td>
</tr>
<tr>
<td>Blanco</td>
<td>5.500 K</td>
</tr>
<tr>
<td>Verdeo</td>
<td>6.000 K</td>
</tr>
<tr>
<td>Azulado</td>
<td>6.500 K</td>
</tr>
<tr>
<td>Azul</td>
<td>7.300 K</td>
</tr>
<tr>
<td>Azul intenso</td>
<td>10.000 K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 1.2</th>
<th>Aspectos cromáticos de la temperatura de color (Hernández David, 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de color correlacionado</td>
<td>Aspecto cromático</td>
</tr>
<tr>
<td>Menor de 3300</td>
<td>Cálido (blanco rojizo)</td>
</tr>
<tr>
<td>3300- 5000</td>
<td>Intermedio (blanco)</td>
</tr>
<tr>
<td>Mayor a 5000</td>
<td>Frío (blanco azulado)</td>
</tr>
</tbody>
</table>
2.1.8.2 RENDIMIENTO DE COLOR.
Esta es una medida de la calidad de reproducción de los colores, la cual se evalúa con el Índice de Rendimiento del Color (IRC o Ra), la cual consta en comparar la reproducción de una muestra de colores normalizada, la cual es iluminada con la lámpara a prueba y después se compara con una fuente de luz de referencia, entre más alto sea el valor tendrá mejor nivel de reproducción de colores tendrá como se muestra en figura 1.5. Las lámparas con índice de color menor de 80 no deberían ser usadas en interiores en los que las personas trabajen o permanezcan durante largos periodos. (gasnatural.fenosa, s.f.)

Los luminarios para alumbrado de áreas exteriores con LED’s deben tener un valor de índice de rendimiento de color mínimo de 70 (NOM-031-ENER-2012, 2012)

1.2.9 CLASIFICACIONES DE LÁMPARAS.
A. Lámparas Incandescentes.
B. Lámparas de descarga.
C. Lámparas mixtas.
D. LED´s.
A) INCANDESCENTES:

- **Convencionales (focos):** Lámpara que produce luz mediante un elemento metálico (filamento) calentado hasta generarla por el paso de una corriente eléctrica.

- **Halógenas:** Es una variante de la lámpara incandescente con un filamento de tungsteno dentro de un gas inerte y una pequeña cantidad de halógeno (como yodo o bromo).

B) DE DESCARGA:

- **Fluorescencia (ahorradoras):** Lámpara en la cual la mayor parte de la luz es emitida por una capa de material fluorescente excitada por la radiación ultravioleta de la descarga. Son lámparas de vapor de mercurio a baja presión y una pequeña cantidad de un gas inerte que sirve para facilitar el encendido y controlar la descarga de electrones.
 - Tubulares (T).
 - Compactas (LFC).

- **Alta intensidad (HID):** Lámparas que producen luz gracias a una descarga eléctrica a través de una mezcla de diversos gases, realizado dentro de un tubo de atmósfera controlada.
 - Sodio en alta presión. (SAP).
 - Sodio en baja presión (SBP).
 - Aditivos metálicos. (LAM).

- **Baja intensidad o inducción (LID):** Se basa en la descarga eléctrica en un gas a baja presión, prescindiendo de electrodos para originar la ionización, que se sustituyen por una bobina de inducción sin hilamentos y una antena acopladora (cuya potencia proviene de un generador externo de alta frecuencia). Ambos elementos crean un campo electromagnético que introduce la corriente eléctrica en el gas, provocando su ionización.

C) MIXTAS: Es una combinación de lámpara de vapor mercurio y lámpara incandescente, este tipo de lámpara no necesitan balastro ya que su filament actúa como estabilizador de corriente.

D) LED’s: Un diodo emisor de luz, o simplemente, LED, es un dispositivo semiconductor que emite luz cuando se polariza de forma directa la unión PN del mismo y se hace circular a través de él una corriente eléctrica.
1.2.10 LED

La palabra LED es un acrónimo en inglés Light Emitting Diode que en español es Diodo Emisor de Luz, y los diodos son componentes electrónicos que permiten el paso de la corriente en un solo sentido, en este caso el diodo emite una luz. En sentido contrario no deja pasar la corriente y se comporta como si fuera un interruptor abierto.

La tecnología LED ha llegado a nuestros días conectada a la red eléctrica a 127V Y 230V. Las ventajas de dicha tecnología son muchas que serán mencionadas más adelante.

En el campo de la iluminación se ha vuelto más común encontrar LED’s para llevar a cabo la tarea de iluminar, un claro ejemplo es cuando lo encontramos adaptado en linternas, lámparas, juguetes, automóviles u otros accesorios similares, un ejemplo en alumbrado público podemos ver un poste con esta tecnología en la figura 1.6. Esto es gracias a su eficiencia compitiendo con las lámparas o accesorios anteriores a esta tecnología (Hernández David, 2015)

Figura 1.6 Poste solar con luminaria LED (esco-tel, s.f.)

1.2.10.1 ¿QUÉ SON LOS LED’S?
Son dispositivos semiconductores emisores de luz cuasimonocromática, polarizados de forma directa cuando son alimentados por una corriente eléctrica, el color de la radiación emitida va a depender del material utilizado en su fabricación.
Están formados en esencia por un material dopado de impurezas formando así un semiconductor tipo P-N y en contraste con los emisores de luz tradicionales los LED’s cuentan con una polarización es decir el ánodo es la terminal positiva y el cátodo la terminal negativa.

Dependiendo de los componentes químicos presentes en su construcción (AlGalnP, GaAs, GalnN, GaP, etc.) pueden reproducir un amplio rango de longitudes de onda dentro del espectro cromático, teniendo como resultado una variedad de colores, desde infrarrojos, pasando por todo el espectro visible (rojos, amarillos, verdes, azules) como se muestra en la figura 1.7, hasta colores ultravioletas, es por ello que los leds se consideran versátiles cuando se requieren fuentes de iluminación con longitudes de onda que no se habían podido obtener con fuentes luminosas tradicionales. (Hernández David, 2015)

La iluminación artificial representa un gasto de electricidad del 20% en países avanzados, repercutiendo directamente en la emisión de carbono, la tecnología de los LED’s prometen proporcionar una iluminación de calidad óptica con un mínimo de consumo de energía. Es gracias a la elevada eficiencia de estos dispositivos de luz blanca que existen las posibilidades de producir ahorros energéticos muy importantes.
Para ilustrar mejor la alta eficiencia de los LED’s la tabla 1.3 se muestra una comparación de los parámetros de una lámpara incandescente y los LED’s.

Tabla 1.3 Comparación de lámpara incandescente vs LED’s (Philips, 2015)

<table>
<thead>
<tr>
<th>ATRIBUTOS</th>
<th>LÁMPARAS INCANDESCENTES</th>
<th>LED’S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia</td>
<td>110 V-AC</td>
<td>~5V-CD</td>
</tr>
<tr>
<td>Tamaño</td>
<td>Grande</td>
<td>Pequeño</td>
</tr>
<tr>
<td>Colores Disponibles</td>
<td>Blanco-similar a la luz solar</td>
<td>Monocromático-todos los colores</td>
</tr>
<tr>
<td>Duración</td>
<td>1000 horas</td>
<td>20[100] mil horas</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Caliente</td>
<td>Frio</td>
</tr>
<tr>
<td>Eficacia</td>
<td>16 lúmenes/Watt</td>
<td>25[160] lúmenes/Watt</td>
</tr>
<tr>
<td>Costo</td>
<td>0.4$/kilolumen</td>
<td>200 $/kilolumen</td>
</tr>
<tr>
<td>Integración con chips de ordenador</td>
<td>Complejo</td>
<td>Simple</td>
</tr>
</tbody>
</table>

1.2.10.2 APLICACIONES

El campo de aplicación de los LED’s es muy amplio ya que pueden ser utilizados en hogares, centros comerciales, parques donde su principal función es el ahorro y eficiencia de energía eléctrica, para el caso de los LED’s ultra brillantes su campo de aplicación es en la iluminación interior o decorativa, al utilizar LED’s en iluminación exterior el ahorro de energía eléctrica puede llegar a alcanzar un valor cercano entre el 50 y 60%. (Hernández David, 2015)

Entre las aplicaciones más importantes que se les da a estos dispositivos emisores de luz se encuentran:
Tiras de LED’s (figura 1.8): Tipo interior, Tipo semi-exterior, Tipo exterior, Tipo exterior uso rudo, sumergible.

Módulos de LED’s (figura 1.9): 1 LED’s, 2 LED’s, 3 LED’s, 4 LED’s, 8 LED’s, 9 LED’s, 15 LED’s.
Lámparas de LED’s (figura 1.10): Empotrables e Industriales.

Figura 1. 10 Lámparas LED’s (http://www.clasf.pe/ilumina-tu-hogar-con-tubos-led-en-lima-2284010/)

Tubos de LED’s (figura 1.11): Tubular tipo T5 y T8.

Figura 1. 11 Tubos LED’s (http://www.svled.com/es/big/Luminarias-publica-led.jpg)
Iluminación Vial. En la figura 1.12 se muestra un luminario de vía pública.

![Figura 1.12 luminaria led (alumbrado publico)](http://img.diytrade.com/cdimg/1530439/22975490/0/1313632426/LED_Wall_Wash_Light.jpg)

Baños de Luz. En la figura 1.13 se muestra la aplicación de los baños de luz.

![Figura 1.13 Baño de luz (LED’s)](http://www.monografias.com/trabajos93/analisis-comparativo-lamparas/image019.jpg)
1.2.10.3 LA VIDA ÚTIL DEL LED

La vida útil de un LED es el periodo de tiempo en el que éste funciona sin depreciación de su flujo luminoso, eso quiere decir sin disminuir su capacidad de emitir una intensidad luminosa constante.

El LED pierde su intensidad luminosa original respecto al tiempo y ésta se calcula en base a un determinado porcentaje del flujo luminoso inicial y no en base al momento en que dejan de operar: Lo anterior significa que el LED sigue funcionando después de las horas de vida útil especificadas por el fabricante, aunque con menor emisión de la intensidad luminosa original.

La estimación de la vida mínima útil de un LED de calidad es de 50,000 horas. Significa que a las 50,000 horas el flujo luminoso se mantiene al menos un 70% de su valor inicial. Rebasadas las 50,000 horas de operación, el LED continuara emitiendo un flujo luminoso de un 30% menos respecto al flujo luminoso inicial, sin dejar de emitir intensidad luminosa.

1.2.10.4 VENTAJAS Y DESVENTAJAS

VENTAJAS

♣ La relación de consumo de energía es de aproximadamente 1/10 veces con respecto a las lámparas incandescentes.
♣ Cuentan con una vida útil elevada (según datos del fabricante) y su costo de mantenimiento es bajo.
♣ Bajo consumo de Tensión y Corriente.
♣ Excelentes para el diseño de sistemas de iluminación multicolor o RGB.
♣ Permite la elaboración de dispositivos más prácticos y de fácil instalación.
♣ Casi irrompible

DESVENTAJAS

♣ Su correcto desempeño está ligado a la temperatura, es por ello que con una ligera variación en la temperatura daña al LED.
♣ Su costo inicial es mayor al de otras tecnologías como la luz fluorescente e incandescente.
La tensión y corriente deben ser los adecuados es por ello que se utilizan fuentes de alimentación reguladas.

Daño a la vista en particular los colores blanco, rojo, verde, azul, existe la preocupación de que los LED’s azules son capaces de superar los límites de seguridad de los llamados “peligros de la luz azul” según los estándares de la ANSI/IESNA RP-27.1-05 para lámparas.

1.2.11 PARTES DE UNA LUMINARIA LED.
En la figura 1.14 se muestran las partes de la luminaria que se explican a continuación.

1. Cubierta de hule.
2. Aro
3. Canal de salida.
4. Poste de lámpara.
5. Tablero de energía.
7. Carcasa.
8. Tornillo fijador para cable.

![Figura 1. 14 Partes de una luminaria LED](http://heliotech.com.mx/images/esquema.jpg)
CAPÍTULO 2
ALUMBRADO PÚBLICO
2.1 ALUMBRADO PÚBLICO

En esta misma norma divide el alumbrado público en dos grupos las cuales se explican a continuación.

2.1.1 VIALIDADES.
Las vialidades son áreas definidas y dispuestas adecuadamente para el tránsito seguro y confortable de los usuarios. En la NOM-013-ENER-2013 las clasifica en:

♣ Autopistas y carreteras.
♣ Vías de acceso controlado y vías rápidas.
♣ Vías principales y ejes viales.
♣ Vías primarias y colectoras.
♣ Vías secundarias

2.1.2 ESTACIONAMIENTOS.
Los estacionamientos son considerados espacios de servicio público cuya finalidad principal es el resguardo seguro de vehículos automotores, independientes de cualquier comercio o edificio no residencial, estos pueden ser:

♣ Abiertos
♣ Cerrados o techados
2.1.3 ASPECTOS RELATIVOS DE ILUMINACIÓN EN ALUMBRADO PÚBLICO

En un sistema de iluminación dirigido al sector público hay varios aspectos a considerar uno de ellos es que dicho sistema debe ser diseñado para proporcionar el nivel requerido de iluminación para el tipo de vialidad, es decir se debe de tomar en cuenta el tamaño de la calle y el flujo de tránsito.

En cualquier sistema de alumbrado público se debe de considerar los niveles de iluminación para pasos peatonales y banquetas.

Otro aspecto importante es el costo de la tarifa eléctrica, ya que la tarifa dirigida al alumbrado público es la tarifa más cara, lo que se busca es que con el sistema a diseñar sea de bajo costo maximizando así la relación beneficio que es lo que un sistema de iluminación eficiente busca, dado que dentro de este trabajo de investigación no es necesario será omitida.

La iluminación y el consumo están estrechamente ligados por lo que existen tres parámetros que nos definen el consumo en un sistema de iluminación.

- La potencia de la lámpara [W]
- El tiempo de Uso de la Iluminación [hrs.]
- La tecnología de la lámpara

2.1.4 RECOMENDACIONES PARA EL DISEÑO DE SISTEMAS DE ALUMBRADO PÚBLICO

Existe un documento que es de vital importancia para poder diseñar un sistema de iluminación eficiente este documento es la NOM-013-ENER-2013, ya que es nuestro documento mandatorio cuando se quiere cambiar un sistema de iluminación o plantear uno nuevo, es por ello que se debe tomar en cuenta la Densidad de Potencia Eléctrica para Alumbrado (DPEA) establecida en esta Norma Oficial Mexicana.

Para complemento del diseño de alumbrado público con tecnología LED, se debe tomar en cuenta los valores mínimos requeridos para sistemas de iluminación con luminarios LED referidos a la norma NOM-031-ENER-2012, ya que trata de la eficiencia energética para
luminarios LED destinados a vialidades y áreas exteriores públicas, especificaciones y métodos de prueba.

2.1.5 SISTEMA DE ALUMBRADO PÚBLICO CON ENERGÍA SOLAR

Está basado en la generación de energía eléctrica por medio de un arreglo de paneles fotovoltaicos, la cual es almacenada en un banco de baterías para su uso posterior durante la noche, que es cuando la lámpara se enciende para iluminar el área deseada.

Este sistema se dice que es autónomo porque no necesita de ningún tipo de combustible fósil para poder trabajar ya que la única fuente de energía es el sol, en el poste se encuentran todos los dispositivos electrónicos como eléctricos para que funcione de manera adecuada, estos elementos son: la lámpara, los módulos solares, banco de baterías y controladores automáticos como se puede ver en la figura 2.1.

![Diagrama del sistema de alumbrado público con energía solar](image-url)

Figura 2.1 Poste solar con una luminaria autónoma para alumbrado público (esco-tel, s.f.)
Estos sistemas tienen un área de aplicación bastante amplia ya que por su alta eficiencia y poco daño al ambiente es la tecnología más novedosa que se está aplicando hoy en día por ejemplo: Alumbrado Público en calles y avenidas, Estacionamientos, Parques, Comunidades Rurales, Puentes, Invernaderos, etc.

Antes de instalar un sistema de este tipo tenemos que contestar a las preguntas más frecuentes como son: ¿Cómo funcionan estos sistemas?, ¿Cómo se cargan las baterías?, ¿Cuánto tiempo duran cargadas las baterías? Y ¿Funcionan en días nublados?

Para poder dar respuesta a estos cuestionamientos debemos tener en cuenta conceptos tales como:

♦ CARGA DIURNA:

Es cuando al amanecer el voltaje que es generado en el panel solar pasa desde un punto cero a un valor máximo, excediendo así la tensión de las baterías es cuando la corriente comienza a circular por nuestro sistema.

La corriente generada por el panel solar se dirige a recargar las baterías, mismas que están descargadas por el uso de la noche anterior, las baterías se cargan hasta que el banco llega a cierto nivel de tensión, nuestro controlador comienza a modular la corriente por medio de pulsos (PWM) esto para mantener la tensión constante por algunas horas.

Es así que por medio de este procedimiento las baterías quedan cargadas al 100% sin que por un lado se tenga una gasificación excesiva o que por el otro lado la batería no resulte cargada.
OPERACIÓN NOCTURNA:

Comienza cuando nuestro controlador detecta la ausencia de luz solar es cuando se enciende nuestra lámpara o en el caso que la tensión del arreglo solar es menor al de nuestras baterías, el controlador apaga los componentes de potencia evitando que nuestro banco de baterías se descargue a través del arreglo solar (se convierte en carga eléctrica cuando no hay sol).

La lámpara se alimenta directamente de nuestro banco de baterías, las cuales al término de la noche solo se han descargado un 12% de la carga máxima al inicio de la misma.

DÍAS NUBLADOS:

Cuando se quieren instalar este tipo de sistemas en esta condición, la corriente que entregan los módulos solares es pequeña aproximadamente del 20% de la corriente máxima.

El sistema está diseñado para soportar un periodo de 3 días consecutivos a cero insolación, en dado caso que se cumpla este periodo sin luz solar el sistema tiene la capacidad para cargar el banco de baterías por completo.

2.1.6 NOM-031-ENER-2012

“Esta norma oficial mexicana establece las especificaciones de eficiencia luminosa para los luminarios con diodos emisores de luz destinados a vialidades y áreas exteriores públicas así como los métodos de prueba aplicables para verificar dichas especificaciones. Así mismo, establece el tipo de información de características técnicas esenciales acorde con el uso destinado, que deben llevar los productos objeto de esta norma oficial mexicana que se comercialicen dentro del territorio de los Estados Unidos Mexicanos y de igual forma atiende la necesidad de que dichos productos propicien el uso eficiente y el ahorro de energía”. (NOM-031-ENER-2012, 2012)
Su campo de aplicación de esta norma se basa con los luminarios con componentes de iluminación LED que se comercializa e instalan en el territorio nacional para alumbrar vialidades y áreas exteriores públicas.

2.1.7 NOM-013-ENER-2013

“En esta norma se habla acerca de la Eficiencia Energética para sistemas de alumbrado en vialidades; la cual tiene como objetivo establecer los niveles de eficiencia energética en términos de valores máximos de Densidad de Potencia Eléctrica para Alumbrado (DPEA), así como la iluminancia promedio, máxima o mínima para alumbrado en vialidades en las diferentes aplicaciones que se indican en la presente norma, con el propósito que se diseñen o construyan bajo un criterio de uso eficiente de la energía eléctrica, mediante la optimización de diseños y la aplicación de equipos y tecnologías que incrementen la eficacia” (NOM-013-ENER-2013, 2013)

Esta norma comprende todos los sistemas nuevos de iluminación para vialidades y estacionamientos públicos abiertos, cerrados y techados, así como las ampliaciones o modificaciones de instalaciones ya existentes que se construya en el territorio nacional, independientemente de su tamaño y carga conectada.

En el punto 5.1 de esta norma habla de los sistemas de alumbrado de las vialidades que hacen referencia a los sub-incisos 5.1.2 que deben cumplir con lo establecido en la tabla 2 de la norma, la cual se puede observar a continuación. Observe la tabla 2.1.

<table>
<thead>
<tr>
<th>Clasificación de Vialidad</th>
<th>Iluminancia mínima promedio [lx]</th>
<th>Relación de uniformidad promedio máxima E_{prom}/E_{min}</th>
<th>DPEA [W/m2]</th>
<th>Ancho de calle [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 9,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 9,0 y < 10,5</td>
<td>≥ 10,5 y < 12,0</td>
</tr>
<tr>
<td>Autopistas y carreteras</td>
<td>6</td>
<td>3 a 1</td>
<td>0,41</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,31</td>
</tr>
<tr>
<td>Vías de acceso controlado</td>
<td>14</td>
<td>3 a 1</td>
<td>1,01</td>
<td>0,95</td>
</tr>
<tr>
<td>y vías rápidas</td>
<td></td>
<td></td>
<td></td>
<td>0,81</td>
</tr>
<tr>
<td>Vías principales y ejes viales</td>
<td>17</td>
<td>3 a 1</td>
<td>1,17</td>
<td>1,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías primarias y colectoras</td>
<td>12</td>
<td>4 a 1</td>
<td>0,86</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo A</td>
<td>9</td>
<td>6 a 1</td>
<td>0,64</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo B</td>
<td>7</td>
<td>6 a 1</td>
<td>0,49</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías secundarias industrial Tipo C</td>
<td>4</td>
<td>6 a 1</td>
<td>0,32</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para calcular la Densidad de Potencia Eléctrica para alumbrado y del área total por iluminar, se realiza con el siguiente método de cálculo mostrado en la ecuación 2.1.

\[
DPEA = \frac{\text{carga total conectada para alumbrado}}{\text{área total iluminada}} \tag{2.1}
\]

Donde la Densidad de Potencia Eléctrica para Alumbrado está expresada en W/ m², la carga total conectada para alumbrado está conectada en watt y el área total iluminada está expresada en metros cuadrados.
Se debe tomar en cuenta que los anchos de calle deben considerarse sin incluir las áreas destinadas a aceras o camellones, y en el caso de que los equipos para alumbrado que requieran el uso de balastros u otros dispositivos para su operación; el valor de su potencia nominal se debe tomar en conjunto con el de la lámpara.

2.1.8 TIPOS DE DISTRIBUCIÓN SEGÚN LA NOM-013-ENER-2013
Existen 4 distribuciones de luminarias que podemos encontrar en avenidas, calles, andadores, etc. Como se muestran en las figuras (2.17, 2.18, 2.19, 2.20)

DISTRIBUCIÓN TRES BOLILLO

Figura 2.2 Distribución tres bolillo (NOM-013-ENER-2013, 2013)
DISTRIBUCIÓN UNILATERAL

![Diagrama de Distribución Unilateral](image1)

Figura 2. 3 Distribución unilateral (NOM-013-ENER-2013, 2013)

DISTRIBUCIÓN BILATERAL OPUESTA

![Diagrama de Distribución Bilateral Opuesta](image2)

Figura 2. 4 Distribución Bilateral Opuesta (NOM-013-ENER-2013, 2013)
DISTRIBUCIÓN CENTRAL DOBLE

Donde “a” es el ancho de la calle y “d” es la distancia interpostal de la vialidad.

2.1.9 ALUMBRADO PARA EXTERIORES.
Las áreas exteriores pueden ser iluminadas con luminarias para áreas abiertas o de poste elevado, así como reflectores. Dentro de estas luminarias existen de tres tipos con apuntamiento vertical fijo: las de caminos, las de áreas abiertas y las de poste elevado.

Estas luminarias son diseñadas para montarse en una posición paralela al piso, de este modo, la luz que emite cae directamente bajo ellas como se muestra en la figura 2.6 La orientación de las luminarias generalmente es determinada por la ménsula del poste. Este tipo de luminarias es colocado a una altura accesible para su mantenimiento, el cual puede ser un cambio de balastro, limpieza de la luminaria o el cambio de la lámpara.
Dentro del alumbrado exterior también existen luminarios para poste elevado a pesar de que estos tienen una posición fija dentro de su óptica puede cambiarse el ángulo del haz de luz de estos, estos son utilizados para iluminar generalmente lugares abiertos sin árboles u objetos que obstruyan su flujo luminoso figura 2.7 Actualmente no existe ningún nivel de altura que clasifique a un poste alto, lo que lo diferencia de los demás es que estos cuentan con un mecanismo que permite el descenso del luminario para su mantenimiento.

Las luminarias para exteriores generalmente vienen acompañados por diferentes datos los cuales pueden ser:
a) **Diagrama Polar o Curva de Distribución Luminosa.**

En esta se expresa el flujo luminoso de un luminario (lumen) en un Ángulo dado, los cuales se ocupan para poder determinar la iluminancia en un punto dado. A continuación se muestra en la figura 2.8, una curva polar de un luminario exterior.

![Figura 2.8 Curvas Polares de un Luminario para Alumbrado Exterior Transversal y Vertical Marca (General Electric, 2014)](image)

b) **Plano ISO-candela.**

Este tipo de gráficos da la información sobre la magnitud y forma de la emisión luminosa de los luminarios, generalmente son ocupadas en cálculos de alumbrado público, dentro de esta gráfica se localizan el lado calle y el lado casa o acera del haz luminoso del luminario a utilizar, como se muestra en la figura 2.9.

![Figura 2.9 Curva ISO-Candela de un Luminario de Alumbrado Exterior Marca (General Electric, 2014)](image)
c) Coeficientes de Utilización.

Estos gráficos surgen del porcentaje del haz luminoso que incide de un luminario sobre una superficie, la superficie se divide en dos lados, los cuales son: lado casa o acera y lado calle o calzada, como se muestra en la figura 2.10.

De acuerdo a la figura 2.10 se realiza la curva de coeficientes de utilización para los luminarios de alumbrado público, donde acuerdo a una relación de ancho de calle respecto a la altura de montaje se pueden determinar los coeficientes como se ve en la gráfica de la figura 2.11.

2.1.10 CÁLCULO DE ILUMINACIÓN PARA EXTERIORES.

Los procedimientos de diseño que se ocupan para iluminar exteriores con luminarias para caminos, para áreas abiertas y de poste elevado son diferentes a los que se ocupan en la
iluminación con reflectores, ya que en estos se pueden ocupar directamente los datos fotométricos.

Existen diversos procedimientos para el cálculo de iluminación exterior, el más utilizado es el método del tanteo, con este se puede hacer selección del mejor tamaño de lámpara y la mejor curva de distribución. Con esta forma generalmente se busca la distancia interpostal entre luminarias, cabe señalar que este método no es muy preciso ya que solo nos proporciona una iluminancia promedio de la zona a iluminar.

2.1.11 MÉTODO POR TANTEO O ESTIMACIÓN POR EL MÉTODO DE LUMEN.

El método por tanteo de lumen es muy parecido al ocupado en el diseño de iluminación en interiores lo único en que difiere es en el cálculo del coeficiente de utilización y el factor de mantenimiento, para poder realizar el cálculo se ocupa la ecuación 2.2 mostrada a continuación.

\[S = \frac{\text{lúmenes luminario} \times \text{C.U.} \times \text{F.M.}}{E \times \text{Ancho de arroyo}} \]

(2.2)

De la ecuación anterior tenemos:

- **Nivel de Iluminación Promedio (E):**
 Este se refiere al nivel de iluminancia promedio que mantendrá en la zona en caso de que este sea buscado en la ecuación también se puede conocer como la iluminancia promedio mantenida que requiere el área de trabajo a realizar, está dado en lux.

- **Lúmenes de Luminario:**
 Estos son proporcionados por el fabricante, el cual es el número de lúmenes iniciales de una lámpara, su unidad son los Lúmen.

- **Ancho de Arroyo:**
 Es la distancia que tiene la vialidad del extremo de la acera donde se encuentra el luminario hasta la acera próxima, como se muestra en la figura 2.12.
Coeficiente de utilización (C.U):
El factor de utilización es una medida del rendimiento del conjunto lámpara-luminario y se define como el cociente entre el flujo útil que llega a la calzada y el emitido por la lámpara. Estos valores son representados por una gráfica la cual nos proporciona el fabricante del luminario, y esta creado en base a la relación del ancho del arroyo y la altura del montaje, en la Imagen 4.6 se muestra un ejemplo de una curva de factores de utilización.

Para poder conocer los factores se debe realizar el cociente entre la anchura del arroyo del lado calle con respecto a la altura de montaje y la anchura del arroyo (calzada) del lado casa (acera) con respecto a la altura de montaje, graficándose como se muestra en la figura 2.13.
Al obtener estos dos valores se realiza la suma de ambos como se muestra en la siguiente ecuación:

C. U. Total = C. U. L. CALLE + C. U. L. CASA

(2.3)

* Factor de Mantenimiento (F.M).

Este factor es utilizado para compensar la pérdida de iluminación que ocurre cuando la lámpara se ha desgastado, este factor se constituye por dos valores los cuales son, el L.L.D. que significa la depreciación de lúmenes en la lámpara utilizada, este valor es proporcionado por el fabricante, mientras que el siguiente valor es el L.D.D., el cual es la depreciación de la lámpara por polvo este es tomado de la gráfica de depreciación por polvo, la cual se muestra en la figura 2.14.

Figura 2.14 Depreciación de luminarias de alumbrado público, con cierre hermético y cinco tipos de ambientes publicadas por Van Dusen (trazo fino) y la IESNA (trazo grueso) (Illuminating Engineering Society, 1947)
Para poder determinar el tipo de ambiente al cual está sometido el luminario, se explican a continuación en la tabla 2.2, el tipo de zona a que se refiere cada curva de la gráfica anterior.

<table>
<thead>
<tr>
<th>AMBIENTE</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy limpio</td>
<td>Moderada actividad generadora de polvo y humos en la cercanía. El nivel de partículas no es mayor de 600 metros cúbicos.</td>
</tr>
<tr>
<td>Limpio</td>
<td>No existen actividades generadoras de polvo o humos en la cercanía además de que tienen un bajo nivel de contaminación ambiental, transito ligero generalmente limitado a áreas residenciales o rurales, el nivel de partículas ambientales no es mayor de 300 microgramos por metro cubico</td>
</tr>
<tr>
<td>Moderado</td>
<td>No existen actividades generadoras de polvo y humos en la cercanía, transito moderado o pesado. El nivel de partículas ambientales no es mayor de 300 microgramos por metro cubico.</td>
</tr>
<tr>
<td>Sucio</td>
<td>Humos y polvo generadores en actividades en la cercanía pueden ocasionalmente envolverlos.</td>
</tr>
<tr>
<td>Muy sucio</td>
<td>Los luminarios están envueltos en humo.</td>
</tr>
</tbody>
</table>

Con los valores anteriores se puede calcular el factor de mantenimiento con la ecuación 2.4

\[
F.M = L.L.D.∗ L.D. D
\]

Espaciamiento ó Distancia Interpostal (S):

El espaciamiento es la distancia que existe entre luminarios también conocida como distancia interpostal, su unidad de medida son los metros la figura 2.15 muestra la distancia interpostal.
Con todos los valores obtenidos ya se puede realizar el cálculo de iluminación de la ecuación 2.3, aunque cabe señalar que el espaciamiento se busca en caso de que la instalación sea nueva, se puede despejar cualquier valor dependiendo de qué es lo que se quiera conocer.

2.2 SISTEMA FOTOVOLTAICO

Ya que a lo largo de los años se ha generado energía eléctrica con combustibles fósiles (petróleo, carbón mineral y gas natural). Los cuales son recursos que cuentan con una cantidad finita de material, van a agotarse tarde o temprano. Hoy en día las alternativas para la generación de energía eléctrica son las energías renovables, que son las que tienen una fuente prácticamente inagotable con respecto al tiempo de vida de un ser humano en el planeta y cuyo aprovechamiento es técnicamente viable. Dentro de estos tipos de energía se encuentra la solar, eólica, hidráulica, biomasa y geotérmica.

La energía mediante recursos renovables ofrece la oportunidad de obtener energía para diversas aplicaciones, su aprovechamiento tiene menores impactos ambientales que las fuentes convencionales y ofrecen el potencial para satisfacer nuestras necesidades presentes y futuras, así como su utilización ayuda a que los recursos energéticos no renovables sean conservados.
Específicamente en nuestro territorio mexicano, los niveles de insolación son altos durante la mayoría del año, 5 kWh/m\(^2\)-día en promedio lo que nos dice que se tiene un alto potencial de aprovechamiento. (Urbano Castelán, 2009.)

2.2.1 EFECTO FOTOVOLTAICO

La energía solar fotovoltaica se obtiene mediante la transformación de la energía solar en energía eléctrica a través del efecto fotoeléctrico en la figura 2.16 se muestra el efecto solar. El efecto fotoeléctrico consiste en la emisión de electrones que se produce cuando la luz incide sobre ciertas superficies. El efecto fotovoltaico es la base del proceso mediante el cual una célula convierte la luz solar en electricidad, la luz solar está compuesta por fotones o partículas energéticas los cuales son de diferentes energías correspondientes a las diferentes longitudes de onda del espectro solar. Al momento que los fotones inciden en una celda solar estos pueden ser absorbidos, reflejados o pasar a través de ella, pero solo aquellos fotones que sean absorbidos por la célula podrán generar electricidad; la energía del fotón se transfiere a un electrón de un átomo de la célula. (esco-tel, s.f.)

Las células son agrupadas en módulos para su integración en un sistema fotovoltaico, donde se tiene una vida útil estima de 30 años y su rendimiento después de 25 años de uso se encuentra por encima del 80% de eficiencia.

2.2.2 PANEL FOTOVOLTAICO

Es un dispositivo que convierte la energía solar en energía eléctrica, ya sea de manera directa por medio del efecto fotovoltaico o indirectamente mediante la conversión de energía solar a
calor o a energía química. La forma más común de las celdas solares se basa en el efecto fotovoltaico, en el cual la luz que incide sobre un dispositivo semiconductor de dos capas produce una diferencia de potencial entre las capas. El efecto fue observado primero en un material sólido en 1877, dicho material fue utilizado durante muchos años para los fotómetros que requerían cantidades muy pequeñas de energía. Las celdas solares de silicio figura 2.17 disponibles comercialmente en la actualidad tienen una eficiencia de conversión de la luz que cae sobre ellas en electricidad de cerca del 18%, en la actualidad existen una gran variedad de métodos para la producción práctica de celdas solares de silicio. (esco-tel, s.f.)

2.2.3 PRINCIPIO DE FUNCIONAMIENTO DE UN PANEL FOTOVOLTAICO
Para poder entender el funcionamiento de un panel fotovoltaico es necesario conocer la naturaleza del material y la naturaleza de la luz del sol, un panel fotovoltaico está formado por dos tipos de material generalmente silicio tipo p y silicio tipo n. La luz de ciertas longitudes de onda pueden ionizar los átomos en el silicio y el campo interno producido por la unión separa algunas de las cargas positivas de las cargas negativas dentro del dispositivo. Las cargas positivas se mueven hacia la capa de silicio tipo p y los electrones hacia la capa de silicio tipo n, como se ve en la figura 2.18 aunque estas cargas se atraen mutuamente la mayoría de ellas solamente se pueden recombinar pasando a través de un circuito externo fuera del material esto debido a la barrera energía potencial interno. (CECU, 2011)
2.2.3.1 TIPOS DE PANELES FOTOVOLTAICOS

Un número de células fotovoltaicas se conectan entre sí en un módulo y, generalmente encapsulados en vidrio que se mantienen en un marco y pueden ser montados cuando sea necesario. En la mayoría de los casos, un número de paneles estarán conectados entre sí para formar una matriz, los paneles del mismo tipo pueden ser conectados en serie para dar un voltaje más alto. (esco-tel, s.f.)

Los paneles de silicio tienen tres formas las cuales son por medio de células monocristalinas, células policristalinas o células amorfas.

- Células Monocristalinas figura 2.19: Se cortan de un solo cristal de silicio, su apariencia es de textura suave y de grosor visible. Son las células de mayor eficiencia pero también las de mayor costo de producción y deben ser montados en una estructura rígida para su protección.
Células Policristalinas figura 2.20: Son una reducción de corte de un bloque de silicio, compuesto de un gran número de cristales, su eficiencia es menor a la de una lámina monocristalina por lo tanto su costo disminuye, este tipo de célula debe ser montada en un marco rígido.

Célula Amorfa figura 2.21: Son manufacturadas mediante la colocación de una fina capa de amorfo (no cristalino) de silicio sobre una amplia variedad de superficies. Estas células son las menos eficientes y más económicas, debido a la naturaleza amorfa de la capa fina es flexible y el panel solar entero puede tener la misma característica.
potencia reduce con el tiempo especialmente durante los primeros meses, después de los cuales son básicamente estable.

Figura 2.21 Célula amorfa (http://www.sitiosolar.com/wp-content/uploads/2014/01/Dibujo.png)

2.2.4 TIPOS DE SISTEMA
Existen dos tipos de sistemas de paneles fotovoltaicos, uno es aquel que es totalmente autónomo por lo cual no requiere estar conectado a otra fuente de energía, el otro es el sistema que necesita estar conectado a otra fuente para cumplir con las necesidades.

2.2.4.1 SISTEMA AISLADO
Este tipo de sistemas los encontramos básicamente en lugares o que por el área geográfica de su ubicación es muy difícil proporcionar suministro de energía eléctrica, se busca que la tecnología utilizada en estos sistemas sea de bajo costo para asegurar así su rentabilidad.

Para poder diseñar este tipo de sistemas es necesario realizar un estudio previo, es decir conocer las necesidades de consumo o la cantidad de energía necesaria para satisfacer las necesidades del lugar o tarea a realizar, si no se tiene esta información o se ignora y no se realiza el estudio pertinente nuestro sistema puede estar sobredimensionado o no tiene el funcionamiento esperado y por consiguiente resulta poco factible y muy caro de mantener en operación.

Un sistema aislado está compuesto por varios elementos que en conjunto hacen que funcione de manera adecuada dicha instalación, los componentes que conforman a este tipo de electrificación son: (Sánchez Maza, 2010)

♣ Paneles Solares.
Como lo muestra la figura 2.22

2.2.4.2 SISTEMA CONECTADO A LA RED
Son sistemas que en conjunto con la red de suministro proporcionan el servicio a los usuarios en este caso podemos encontrar dos variantes.

La primera de ellas es en el caso del autoabastecimiento en el que por momentos que falte la energía entra la red de suministro o para volcar los excedentes de energía, es decir que la energía no consumida por el usuario es inyectada a la red para su distribución.

La segunda variante la encontramos cuando se inyecta en su totalidad la energía producida a la red eléctrica. Esta opción es sin duda la más interesante económicamente hablando sobre todo cuando existen leyes que permitan la producción de energía eléctrica con fuentes renovables.

Los componentes que conforman este sistema son: (Sánchez Maza, 2010)
✦ Paneles Solares.
✦ Inversor.
✦ Contador.
Como se muestra en la figura 2.23.

2.2.5 MANTENIMIENTO A LOS PANELES FOTOVOLTAICOS

El mantenimiento a los paneles solares fotovoltaicos es muy importante, ya que para su correcto funcionamiento es necesario que se encuentre en condiciones óptimas para realizar su función principal que es captar la radiación solar.

El mantenimiento consiste en las siguientes acciones:

- Limpiando la cubierta frontal del panel, el tiempo entre una limpieza y otra es dependiendo el nivel de suciedad ambiental en donde esté instalado.
- Verificar que no existan terminales flojas o rotas, que las conexiones estén bien fijas y que los conductores estén en buenas condiciones.
- Verificar la estructura de soporte, que no comience a oxidarse o que no tenga golpes y pongan en riesgo el funcionamiento de nuestro sistema.
En caso de existir árboles en la zona donde se instaló el panel podar de manera frecuente los árboles para evitar que produzcan sombras y no se pueda captar la mayor parte de la radiación.

La figura 2.24 nos muestra cómo dar mantenimiento de limpieza de un panel solar.

![Figura 2.24 Mantenimiento en paneles solares (https://globalelectricity.wordpress.com/category/instalaciones-electricas/)](image)

2.2.6 INCLINACIÓN QUE DEBE TENER UN PANEL FOTOVOLTAICO

Es necesario saber con qué inclinación se colocara un panel solar para que éste funcione a su máxima potencia, antes de su ángulo de inclinación, la inclinación mínima de un panel solar debe de ser 15° como se muestra en la figura 2.25. Se deben tener en cuenta aspectos importantes:

- La parte del día (amanecer, mediodía y noche).
- Estaciones del año (primavera, verano, otoño e invierno).
- La región donde se instalarán los paneles solares (altitud, longitud y latitud).
- La orientación relativa del dispositivo solar.
Existe una variante entre los hemisferios norte y sur en la tierra que son importantes para la instalación un panel solar, tomando en cuenta los puntos mencionados, la rotación de la tierra, que marca la hora del día en cada parte del mundo. Ya que en el hemisferio norte puede ser de mañana, mientras que en el sur está anocheciendo. Se recomienda que los módulos solares del hemisferio norte, que comprende a Norteamérica, el Ártico, parte de África y Asia, estén dirigidos hacia el sur. Mientras que en las regiones de Sudamérica, el sur de África, Australia y Oceanía, que son parte del hemisferio sur, se recomienda que los paneles solares se encuentren dirigidos al norte.

Tomando en cuenta estos puntos, es necesario instalar o establecer el ángulo de inclinación del módulo solar. El grado de inclinación es igual al grado de latitud en donde se encuentra.

Ejemplo de colocar un panel solar en México, aquí se posee las coordenadas de 19° latitud norte y además es un país que es parte del hemisferio norte. Entonces se debe instalar mirando hacia el sur con un ángulo de 19° respecto la horizontal en el terreno donde se encuentra. Y en otro caso de hallarse sobre la línea del ecuador, cuya latitud es de cero grados, se colocará el panel sin inclinación; y así sucesivamente. (Calefacción; solar , 2015)
2.2.7 VENTAJAS Y DESVENTAJAS DEL PANEL SOLAR

VENTAJAS

✦ Se recupera de manera fácil la inversión realizada en la compra e instalación de los paneles.
✦ Debido a que la energía se capta directamente del sol se le considera una tecnología verde, es decir no genera emisiones al ambiente y ayuda a la conservación del medio ambiente.
✦ Su mantenimiento es muy fácil de proporcionar y por lo tanto económico.

DESVENTAJAS

✦ El costo inicial es muy elevado pero solo es una sola vez y se recupera rápidamente.
✦ Las condiciones climáticas donde se instalen afectan la eficiencia del panel.

2.2.8 ENERGÍA SOLAR

Es la potencia radiante producida por el sol como resultado de reacciones nucleares de fusión que llegan a la tierra a través del espacio, estos son llamados fotones, que interactúan con la atmósfera y la superficie terrestre.

En concreto la radiación solar interceptada por la tierra en su desplazamiento alrededor del sol constituye la principal fuente de energía renovable a nuestro alcance, nuestro planeta recibe del sol J anuales, esta cifra representa 4500 veces el consumo mundial de energía.

En general la radiación solar hace referencia a los valores de irradiación global, es decir la unidad de energía recibida por unidad de superficie en un tiempo determinado. (Urbano Castelán, 2009.)

2.2.8.1 RADIACIÓN SOLAR PARA GENERACIÓN DE ELECTRICIDAD.

El sol transforma la energía nuclear en radiación, la cual llega a la tierra pero debido a que la energía pasa por la atmósfera, no llega toda la energía producida por el sol a la superficie terrestre y la radiación pierde intensidad a causa de la absorción, la difusión y la reflexión debido a gases, vapor de agua y particular existentes en la atmósfera. (Sánchez Maza, 2010)
La radiación proveniente del sol se puede dividir en dos tipos:

- Radiación Directa: Es la que atraviesa la atmósfera sin ningún cambio en su dirección.
- Radiación Difusa: Es la que recibe la tierra después de los fenómenos de dispersión y difusión.

En la figura 2.26 se observa el mapa de la república Mexicana con sus 32 estados comparando las zonas de mayor y menor producción anual de radiación solar global diaria sobre el plano horizontal en kWh/m\(^2\); se observa que en el estado de México tenemos de 5.0-5.1 kWh/m\(^2\).

![Mapa de la república Mexicana con sus 32 estados comparando las zonas de mayor y menor producción anual de radiación solar global diaria sobre el plano horizontal en kWh/m\(^2\)].

2.2.9 IMPACTO AMBIENTAL DE LA ENERGÍA SOLAR.

El impacto ambiental de las fuentes de energía renovables es reducido, en el aspecto de la contaminación al aire y al agua, contribuye a la disminución de las emisiones de gases de efecto invernadero. Los sistemas fotovoltaicos no producen emisiones ni ruidos o vibraciones y su impacto visual es reducido gracias a que por su disposición en módulos pueden adaptarse a la morfología de los sitios en los que son instalados. El impacto de estos sistemas no puede considerarse nulo ya que algunos problemas que pueden presentarse pueden ser en la fabricación de los componentes de los paneles ya que los sistemas más utilizados son basados en el silicio. Es evidente que ni siquiera las tecnologías poco contaminantes están exentas de conllevar impactos al medio ambiente, sin embargo la magnitud y la significación de estos sistemas son
claramente inferiores a los de otras tecnologías de producción de energías tradicionales. (Urbano Castelán, 2009.)

2.2.10 HUELLA DE CARBONO

La huella de carbono es una de las formas más fácil que existen de medir el impacto que deja una persona sobre el planeta en su vida diaria; Es un recuento de las emisiones de dióxido de carbono (CO$_2$), que son liberadas a la atmósfera debido a las actividades cotidianas del ser humano. Por tal motivo la huella de carbono es la medida del impacto que provocan las actividades en el medio ambiente y se determina según la cantidad de emisiones de GEI producidos, medidos en unidades de dióxido de carbono equivalente.

El objetivo de la huella de carbono es buscar la cantidad de GEI que son emitidos directa o indirectamente a la atmósfera cada vez que se realiza una acción determinada para que las empresas puedan reducir los niveles de contaminación mediante un cálculo estandarizado de las emisiones durante los procesos productivos.

Beneficios de la huella de carbono:
Al identificar las fuentes de emisiones de GEI de un producto en todo el proceso productivo, permite definir mejores objetivos, estrategias de reducción de emisiones más efectivas y ahorros de costo.

Genera un compromiso por parte de los consumidores por reducir su propio impacto sobre el cambio climático y además se crea conciencia por parte de los países desarrollados a diferenciar entre productos basado en su compromiso de reducir emisiones. (UACH, 2015)

1 kWh de electricidad = 510 gr CO$_2$
CAPÍTULO 3
ESTUDIO TÉCNICO
3.1 DESCRIPCIÓN DE LA LUMINARIA A UTILIZAR EN LA PROPUESTA DE ALUMBRADO.

Descripción general: LUMINARIO EG320-3.6

El luminario está diseñado para aplicaciones de iluminación al aire libre, incluyendo senderos, parques, estacionamientos y la iluminación de vías urbanas, el LED solar EG320 y su sistema de iluminación al aire libre es una poderosa alternativa a la iluminación AC tradicional.

Cuenta con un diseño integrado de postes superiores que permite una rápida y fácil instalación, y protección superior contra robo y vandalismo, el EG320 está diseñado para soportar condiciones climáticas extremas con capacidades de carga de viento de hasta 241 km por hora. Superior eficiencia energética que garantiza la máxima expulsión de luz y uniformidad de mayor rendimiento en artefactos de iluminación de la industria. En la figura 3.1 se puede observar el sistema completo para esta propuesta.

Figura 3.1 Sistema de iluminación propuesto (google, 2015)
El luminario tipo XSP2 proporciona un flujo luminoso de 4718 lumen, se toma en cuenta la curva de distribución tipo 3M como se muestra en la figura 3.2, con una temperatura de color de 5700K.

3.1.2 FACTORES DEL LUMINARIO PARA EL DISEÑO DE UN SISTEMA DE ILUMINACIÓN.

Para el sistema de alumbrado exterior del camino periférico empedrado de la zona arqueológica de Teotihuacán, las condiciones de trabajo son constantes en cada tramo entre sus entradas, por lo tanto el factor de mantenimiento será igual para toda el área; para conocerlo ocuparemos la ecuación 2.4 antes mencionada.

\[
F. M = L. L. D. \times L. D. D
\]

(2.4)

Se determinan los valores para el cálculo de factor de mantenimiento de la luminaria EG320-3.6.

- \(L. L. D. = 0.9 \) (Se determina de acuerdo a la calidad del luminario y debido al prestigio de los LED’s con los que está producido, dado por el fabricante).
L.D.D.=0.69 (tomado de la curva de factores de depreciación categoría ii, a un tiempo de 5 años, con una curva a ambiente sucio.

En la figura 3.3 se muestra el trazo de nuestro tiempo estimado en años para el mantenimiento a nuestro sistema el cual fue de 5 años con un ambiente sucio para calcular nuestro L.D.D..

![Figura 3.3 Curvas de depreciación luminosa para luminarios IESNA](image)

Para obtener el factor de mantenimiento se multipican ambos valores.

\[F.M. = 0.9 \times 0.69 = 0.621 \]

3.2 CÁLCULO DEL ALUMBRADO.

El cálculo del sistema de alumbrado exterior, se realizó tomando en cuenta una distribución unilateral marcada en la NOM-013-ENER-2013 que será instalada en la parte colindante a las pirámides de Teotihuacán. En la propuesta se maneja la uniformidad en luminarios de mediana potencia para que con la combinación de las disposiciones se pueda cumplir con los lux requeridos para vialidades como lo marca la tabla 2.5.

Debido a que no se cuenta con una infraestructura para alumbrado calcularemos la distancia interpostal de instalación de cada uno de los sistemas de alumbrado con la ecuación 2.2.

$$ S = \frac{\text{lúmenes luminario} \times \text{C.U.} \times \text{F.M.}}{E \times \text{Ancho de arroyo}} $$ \hspace{1cm} (2.2)

Se marcará por pasos el método que utilizara para calcular la distancia interpostal para este proyecto:

- **Paso uno**, tomando en cuenta que los lúmenes del luminario son proporcionados por el fabricante, en este caso son de 4718 lumens.

Lúmenes luminario: Este dato nos lo proporciona el fabricante de la luminaria a utilizar.

E: Se encuentra en la NOM-013.ENER-2013, en la Tabla 2 (ver anexo) tomándose como vía secundaria tipo C con acceso peatonal y comercios, la cual nos dice que la iluminancia mínima promedio es de 4 lux.

- **Segundo paso.** Determinación de los coeficientes de utilización (C.U.), del lado acera (C.U. lado acera) y del lado calzada (C.U. lado calzada) así como se muestra en el cálculo siguiente. La figura 3.4 nos marca los puntos que abarcaría la distancia S.

$$ \text{C. U. Total} = \text{C. U. L. acera} + \text{C. U. L. calzada} $$ \hspace{1cm} (2.3)
La figura 3.5 muestra las medidas que se necesitan para seguir con los cálculos, como son: altura de luminario, ancho de arrollo, lado acera, lado calzada.

![Figura 3.5 Dimensiones del camino y luminario propuesto.](image)

Para obtener el (C.U. lado calzada) se necesita conocer la relación del lado calzada utilizando la distancia del ancho de arroyo dividida entre la altura de montaje.

\[
\text{RELACION lado calzada} = \frac{\text{distancia transversal}}{\text{altura del montaje}} = \frac{9.5}{6} = 1.583
\]

Posteriormente se determina el (C.U. lado acera), el cual necesitamos conocer la distancia de ancho lado calzada

\[
\text{RELACION lado acera} = \frac{\text{distancia transversal}}{\text{altura del montaje}} = \frac{1.5}{6} = 0.25
\]

Se utilizó la gráfica para obtener el coeficiente de utilización para el lado acera al igual que el lado calzada como se demuestra con color rojo en la figura 3.6.
Figura 3.6 Coeficiente de utilización

C. U. lado calzada = 0.5
C. U. lado acera = 0.025

♣ Se prosigue con la suma de los coeficientes de utilización, lado calzada y lado acera, como se muestra en la siguiente ecuación.

C. U. Total = 0.5 + 0.025 = 0.525

♣ Se toma como factor de mantenimiento el cálculo antes mencionado (0.621)
♣ Teniendo los valores anteriores se sustituyen en la ecuación 2.2 para conocer la distancia interpostal.

\[S = \frac{\text{lúmenes luminario} \times C.U. \times F.M.}{E \times \text{Ancho de arroyo}} \] \hspace{1cm} (2.2)

\[S = \frac{4718 \times 0.525 \times 0.621}{4 \times 11} = 34.9 \cong 34 \]
El resultado será la distancia interpostal de 34 metros por poste, se seleccionas el valor inferior por conveniencia del proyecto para evitar un efecto negativo y no perder la uniformidad al momento de iluminar.

Una vez conocida la distancia interpostal se podrá conocer el número total de postes que se aplicaran en la zona mencionada dividiendo la distancia total con respecto a la distancia interpostal ya calculadas.

\[
Total \ de \ postes = \frac{distancia \ total}{distancia \ interpostal}
\]

(3.1)

Para la distancia total se realizó la medición del el camino con un podómetro de rueda tomando de referencia los lados de la puerta de acceso 1 de la zona arqueológica. En la figura 3.7 se observa las marcas de principio y termino de la medición.

Figura 3.7 Punto de partida y final de la medición del camino. (google, 2015)
La figura 3.8 muestra la distancia total tomada para el proyecto, la cual fue de 6655 metros.

Teniendo la distancia total calculamos el número de postes necesarios en la propuesta.

\[
Total \ de \ postes = \frac{6655 \ m}{34m} = 195.7 \approx 196
\]

Distribución de postes en el área seleccionada.

La tabla 3.1 nos muestra las distancias de puerta a puerta y la medida de cada una de las puertas que estén dentro de nuestra área de medición. Sumando estas medidas se comprueba que la distancia total para el proyecto la cual fue de 6655 metros totales.

<table>
<thead>
<tr>
<th>Entre puertas</th>
<th>Metros</th>
<th>Puertas</th>
<th>Metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>2360</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>2-3</td>
<td>824</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>3-4</td>
<td>1783</td>
<td>4</td>
<td>17.5</td>
</tr>
<tr>
<td>4-5</td>
<td>516</td>
<td>5</td>
<td>24.5</td>
</tr>
<tr>
<td>5-1</td>
<td>1088</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distancia total | **6655**
En la figura 3.9 se marca con verde la distancia total medida del camino donde se pretende colocar el sistema de iluminación de nuestro proyecto.

![Figura 3.9 Distancia total (google, 2015)](image)

En la figura 3.10 se muestra marcado con color verde la distancia medida entre la puerta 1 y la puerta 2.

![Figura 3.10 Distancia de puerta 1 a puerta 2 (google, 2015)](image)
En la figura 3.11 se muestra marcado con color verde la distancia medida entre la puerta 2 y la puerta 3.

![Figura 3.11 Distancia de puerta 2 a puerta 3 (google, 2015)](image1)

En la figura 3.12 se muestra marcado con color verde la distancia medida entre la puerta 3 y la puerta 4.

![Figura 3.12 Distancia de puerta 3 a puerta 4 (google, 2015)](image2)
En la figura 3.13 se muestra marcado con color verde la distancia medida entre la puerta 4 y la puerta 5.

![Figura 3.13 Distancia de puerta 4 a puerta 5 (google, 2015)](image)

En la figura 3.14 se muestra marcado con color verde la distancia medida entre la puerta 5 y la puerta 1.

![Figura 3.14 Distancia de puerta 5 a puerta 1 (google, 2015)](image)
En la tabla 3.2 se está mostrando cuantos postes se colocaran entre puertas comprobando que la distribución seleccionada es correcta y la suma de estos postes nos da igual el número de postes totales calculados.

<table>
<thead>
<tr>
<th>Tabla 3.2 Distribución de postes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribución de postes</td>
</tr>
<tr>
<td>Puerta – puerta</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>2-3</td>
</tr>
<tr>
<td>3-4</td>
</tr>
<tr>
<td>4-5</td>
</tr>
<tr>
<td>5-1</td>
</tr>
<tr>
<td>Totales:</td>
</tr>
</tbody>
</table>

3.3 OBRA CIVIL

Diseño de base para el sistema de iluminación Solar modelo EG320

3.3.1 INTRODUCCIÓN

Clasificación de las estructuras según su importancia.

Se recomienda que la seguridad necesaria para que una construcción cumpla con las funciones para las que se destine, se establezca a partir de niveles de importancia.

Grupo C

Estructuras para las que se recomienda un grado de seguridad bajo. Son aquéllas cuya falla no implica graves consecuencias, ni causa daños a construcciones de los Grupos A y B.
TIPO 1

Estructuras poco sensibles a las ráfagas y a los efectos dinámicos del viento.

3.3.2 ACCIONES DEL VIENTO QUE DEBEN CONSIDERARSE

ACCIÓN I

Empujes medios. Son causados por presiones y succiones del flujo medio del viento, tanto exteriores como interiores y generan presiones globales (para el diseño de la estructura en conjunto) y locales (para el diseño de un elemento estructural o de recubrimiento en particular). Se considera que estos empujes no varían con el tiempo.

3.3.3 NORMAS Y REGLAMENTOS

Normas técnicas complementarias para el diseño de estructuras metálicas, 2004 Comentarios, ayudas de diseño y ejemplos de las NTC para diseño y construcción de estructuras de concreto, 1991.

3.3.4 MATERIALES

Se enlista los materiales utilizados para la construcción de la base que soportara el sistema de iluminación, para ver detalles observar la tabla 3.3.

- Concreto pobre, con $f'c= 150$ kg/cm2.
- Tornillo sujetador de acero al carbono con rosca estándar exterior H-118, 19x203 con una longitud de 203.2 mm
- Varillas de acero corrugadas con un $Fy = 4200$ Kg/cm2
- Placas de acero estructural ASTM A36 $Fy= 2530$ kg/cm2
Tabla 3.3 Descripción del material utilizado para la base

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillo</td>
<td>Tornillo 19.05 – 10x 203, tipo estructural cabeza hexagonal pesado, material tipo 1 de acuerdo con la norma NMX-H-124-1990, con rosca UNC 2ª de acuerdo con la norma NMX-H-146-SCFI-1996</td>
</tr>
<tr>
<td>Tuerca</td>
<td>Tuerca hexagonal pesada de 19.05 mm de diámetro con rosca UNC 2B de acuerdo con la norma NMX-H-146-SCFI-1996</td>
</tr>
<tr>
<td>Arandela</td>
<td>Arandela de presión de 19.05 mm de diámetro: Material de acuerdo con la norma NMX-H-148-1991</td>
</tr>
</tbody>
</table>

3.3.5 PROPUESTA DE CIMENTACIÓN (PIE DE POSTE).

Debido a que al momento de generar modelos estructurales no se presentaban elementos mecánicos competentes, se propone un diseño de pie de poste, cumpliendo con los parámetros mínimos de dimensiones, de acuerdo con normatividad vigente.

Dimensiones de la placa base ver figura 3.15 y del pie de poste vistos en planta y en elevación como se observan en la figura 3.16.
Figura 3.

Detalle de pie de poste

Plantilla de concreto
\(f'c = 100 \text{ Kgf/cm}^2 \) de un espesor \(5 \text{ cm} \)

Varilla cortada del \#4 con un \(f_y = 4200 \text{ Kgf/cm}^2 \), varilla para anclar base a profundidad deseada

Placa base de 1.27 cm de espesor

Acotación en cm.
El la figura 3.17 se observa a detalle del tornillo estructural 19x203 que es el que se propone en el diseño.

Figura 3. 16 Detalle de la placa base

El la figura 3.17 se observa a detalle del tornillo estructural 19x203 que es el que se propone en el diseño.

Figura 3. 17 Detalle tornillo estructural
CAPÍTULO 4

ESTUDIO ECONÓMICO
4.1.1 INSTALACIÓN REQUERIDA PARA LA PROPUESTA

Esta propuesta requiere un sistema nuevo de iluminación con tecnología LED sin conectar a la red eléctrica, lo cual consiste en colocar postes con distribución unilateral del lado colindante a las pirámides, en los cuales se montará los sistemas antes especificados con el cual se calculó el diseño de la propuesta.

Para la instalación del poste se requiere incorporar un pie de poste que será sobrepuesto en el área especificada para el anclaje del sistema.

En la tabla 4.1 se registra la descripción del equipo utilizado, precios unitarios, totales de los materiales y mano de obra de las actividades.
<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio unitario Pesos ($)</th>
<th>Total Pesos ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Panel solar de 99.2 x 164 cms.</td>
<td>196</td>
<td>Pza.</td>
<td>5,674.72</td>
<td>1,112,245.12</td>
</tr>
<tr>
<td>2</td>
<td>luminario XSP2 de 10 LED’s de 42w de alta eficiencia, 101.1 lúmenes x watts</td>
<td>196</td>
<td>Pza.</td>
<td>48,136.98</td>
<td>9,434,848.86</td>
</tr>
<tr>
<td>3</td>
<td>batería de malla de fibra de vidrio de 2200 ciclos hasta una profundidad de descarga de 20 % a 20ºC para 13 hrs.</td>
<td>392</td>
<td>Pza.</td>
<td>6,844.00</td>
<td>2,682,848.00</td>
</tr>
<tr>
<td>4</td>
<td>Poste cónico circular de 5.5 mts. de altura, fabricado con lamina de acero A-36 en calibre 3/16 in, terminado en galvanizado por inmersión en caliente</td>
<td>196</td>
<td>Pza.</td>
<td>4,555.32</td>
<td>892,842.72</td>
</tr>
<tr>
<td>5</td>
<td>Brazo tipo (I) con percha para poste metálico de 1.22 m x 1 1/2 de diámetro acabado por en galvanizado por inmersión en caliente</td>
<td>196</td>
<td>Pza.</td>
<td>285.82</td>
<td>56,021.50</td>
</tr>
<tr>
<td>6</td>
<td>Juego de 4 anclas de 1 in de diámetro por un metro de longitud con herrajes, terminadas por galvanizadas por inmersión en caliente</td>
<td>196</td>
<td>Pza.</td>
<td>857.47</td>
<td>168,064.51</td>
</tr>
<tr>
<td>7</td>
<td>base de concreto</td>
<td>196</td>
<td>Pza.</td>
<td>2,875.00</td>
<td>563,500.00</td>
</tr>
<tr>
<td>8</td>
<td>Proyecto de ingeniería</td>
<td></td>
<td></td>
<td></td>
<td>1,009,108.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisa</th>
<th>M.N.</th>
<th>Subtotal</th>
<th>15,919,479.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.V.A.</td>
<td>2,547,116.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18,466,595.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partida</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>unidad</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Mano de obra de instalación por unidad</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divisa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I.V.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Especificaciones.

El sistema de iluminación solar con LED’s sencillo autónomo, marca carmanah, sin conexión a la red de C.F.E., con un panel solar de 99.2 x 164 centímetros marca british petroleum, con un luminario modelo XSP2 de 10 LED’s de 42 w. de alta eficiencia, con una eficiencia de 101.1 lúmenes por watt, con dos baterías de malla de fibra de vidrio absorbente para una vida útil de 2200 ciclos hasta una profundidad de descarga de 20% a 20°c (68°f), para 12 horas. en operación, un poste recto cónico de 5.50 metros de altura, fabricado con lámina de acero A36 en calibre 3/16" terminado en primer anticorrosivo en color rojo óxido (no se cotiza pintado, en virtud de que al transpórtalos y manejarlos la pintura se daña), incluye todos los herrajes de montajes para el panel, luminario, baterías y anclaje al piso, con curvas de distribución fotométricas certificadas según las norma IESNA, tipo ii, iii, iv y/o v, especial para carreteras, autopistas, iluminación perimetral, caminos, calles, avenidas, parques, jardines e iluminación en general.

La mano de obra es referente a la instalación de los sistemas, los cuales por medio de la compañía cotizada incluye un ingeniero, cuatro técnicos y herramienta empleada los cuales ya vienen estimados en el costo de mano de obra.

El mantenimiento eléctrico para esta instalación con luminarios LED, es casi nulo ya que solo consta de revisión y limpieza cada cinco años, el cual está calculado con un tiempo promedio por luminaria de treinta minutos en una jornada laboral de 8 horas. En la tabla 4.2 se muestra la actividad y costos por el mantenimiento preventivo eléctrico para una luminaria.
LED. Se toma en cuenta que se dará mantenimiento a 16 luminarios por día con un total de 12 días para el mantenimiento de todos los sistemas propuestos.

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>precio unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Batería de fibra de vidrio</td>
<td>1960</td>
<td>Pza.</td>
<td>6,844.00</td>
<td>13,414,240.00</td>
</tr>
<tr>
<td>2</td>
<td>Lámpara led</td>
<td>392</td>
<td>Pza.</td>
<td>48,136.98</td>
<td>18,869,697.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisa</th>
<th>M.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td>32,283,937.73</td>
</tr>
<tr>
<td>I.V.A</td>
<td>5,165,430.04</td>
</tr>
<tr>
<td>Total</td>
<td>37,449,367.76</td>
</tr>
</tbody>
</table>

Teniendo como referencia los salarios mínimos vigentes a partir del 1 de enero del 2015 de la Comisión Nacional de los Salarios Mínimos tenemos que el salario de un electricista es de $99.9 al cual se le otorgara un salario de $200; y al supervisor un salario de 250

4.2 BENEFICIO DE LA PROPUESTA

En tabla siguiente se muestra el beneficio que aportaría este proyecto comparando el estado actual contra los beneficios que aportaría nuestra propuesta de iluminar este camino de la zona arqueológica de Teotihuacán.
Tabla 4.4 Comparación de situación actual contra propuesta

<table>
<thead>
<tr>
<th>BENEFICIOS</th>
<th>ACTUAL</th>
<th>PROPUESTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inseguridad por la falta de luz:</td>
<td>Actos de vandalismo, asaltos</td>
<td>Se pretende que la zona quede iluminada para que esto conlleve a que la</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inseguridad disminuya ya que una zona iluminada es un área más segura</td>
</tr>
<tr>
<td></td>
<td></td>
<td>como para tránsito vehicular como para el tránsito peatonal</td>
</tr>
<tr>
<td>Pocos eventos nocturnos</td>
<td></td>
<td>Como en la actualidad se cuenta con muy pocos eventos nocturnos, pero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>destacando que se han ido incrementando en comparación con años anteriores,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lo que se pretende lograr es que la propuesta ayude con el aumento de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eventos en el lugar.</td>
</tr>
<tr>
<td>Poco tránsito peatonal</td>
<td></td>
<td>Se quiere que con la iluminación lograda la gente pueda usar las áreas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>para lo que en verdad fueron creadas y se usen los corredores turísticos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>un mayor tiempo</td>
</tr>
<tr>
<td>Ausencia turística</td>
<td></td>
<td>Con la iluminación proporcionada y la propaganda que este nuevo proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>enfatice se pretende causar un aumento en cuanto al sector turístico</td>
</tr>
</tbody>
</table>

4.2.1 COMPARACIÓN DE LOS SISTEMAS PROPUESTOS

Ya que es un diseño nuevo y no hay sistemas previos con que comparar, se realizó el cálculo de otro sistema; se vieron diferentes perspectivas, una como si fuera un sistema aislado y otro interconectado al suministro de energía eléctrica dando como resultado la elección del antes mencionado, se mostraran los datos del luminario a comparar a continuación.
Se utilizó un luminario de aditivos metálicos de 175 watts modelo metalarc compacta por motivo de que es el único tipo de tecnología que de igual manera puede ser alimentada por paneles fotovoltaicos.

FACTORES DEL LUMINARIO PARA EL DISEÑO DE UN SISTEMA DE ILUMINACIÓN.

\[F.M = L.L.D.* L.D.D \] (2.4)

Se determinan los siguientes valores para el cálculo de factor de mantenimiento de la luminaria de aditivos metálicos

- \(L.L.D. = 0.9 \) (Se determina de acuerdo a la calidad del luminario y debido al prestigio de los LED’s con los que está producido)

- \(L.D.D. = 0.83 \) (tomado de la curva de factores de depreciación categoría ii, a un tiempo de 1 1/2 años, con una curva a ambiente sucio.

En la figura 4.1 se muestra el trazo de nuestro tiempo estimado en años para el mantenimiento a nuestro sistema el cual fue de 1 1/2 años con un ambiente sucio para calcular nuestro L.D.D..

![Curva de depreciación luminosa para luminarios IESNA](image-url)
Para obtener el factor de mantenimiento se multiplican ambos valores.

\[F.M. = 0.9 \times 0.83 = 0.747 \]

CALCULO DE ALUMBRADO PARA LA PERIFERIA DE LA ZONA ARQUEOLÓGICA DE TEOTIHUACÁN.

\[S = \frac{\text{lúmenes luminario} \times C.U. \times F.M.}{E \times \text{Ancho de arroyo}} \]

Se marcara por pasos el método utilizado para calcular la distancia Interpostal:

- **Primer paso.** Se toma en cuenta que los lúmenes del luminario son de 9300 lúmenes

 E: Se encuentra en la NOM-013.ENER-2013, en la Tabla 2 (ver anexo) tomándose en cuenta como vía secundaria tipo c con acceso peatonal y comercios, la cual nos dice que la iluminancia mínima promedio es de 4 lux.

- **Segundo paso.** Determinación de los coeficientes de utilización (C.U.), del lado acera (C.U. lado acera) y lado calzada (C.U. lado calzada) así como se muestra en el cálculo siguiente. La figura 4.2 nos marca los puntos que abarcaría la distancia S.
C. U. Total = C. U. L. acera + C. U. L. calzada

La figura 4.3 muestra las medidas requeridas para seguir con nuestros cálculos como son altura de luminario, ancho de arrollo, lado acera, lado calzada.
Para obtener el (C.U. lado calzada) se necesita conocer la relación del lado calzada utilizando la distancia del ancho de arroyo dividida entre el montaje.

\[
RELACION \text{ lado calzada} = \frac{\text{distancia transversal}}{\text{altura del montaje}} = \frac{9.5}{6} = 1.583
\]

Posteriormente se determina el (C.U. lado acera), para obtener este valor es elemental conocer la distancia lado calzada

\[
RELACION \text{ lado acera} = \frac{\text{distancia transversal}}{\text{altura del montaje}} = \frac{1.5}{6} = 0.25
\]

Se utilizó la gráfica para obtener el coeficiente de utilización de cada lado como se demuestra en la figura 4.4.

![Figura 4.4 Coeficiente de utilización Luminario a comparar](image)

\[
C.U. \text{ lado calzada} = 0.5
\]

\[
C.U. \text{ lado acera} = 0.025
\]

Se realiza la suma de los coeficientes de utilización, lado calzada y lado acera, como se muestra en la siguiente expresión.
C. U. Total = 0.5 + 0.025 = 0.525

- Se toma como factor de mantenimiento el antes calculado (0.747)

- Contando con los valores anteriores, se sustituye en la ecuación para conocer la distancia interpostal.

\[
S = \frac{\text{lumenes luminario} \times C. U. \times F. M.}{E \times \text{Ancho de arroyo}}
\]

\[
S = \frac{9300 \times 0.525 \times 0.747}{4 \times 11} = 82.8 \approx 50 \text{ (por norma)}
\]

El resultado será la distancia interpostal de 50 metros por poste.

- Una vez teniendo la distancia interpostal se podrá conocer el número de postes que se aplicaran en la zona mencionada.

\[
\text{Total de postes} = \frac{\text{distancia total}}{\text{distancia interpostal}}
\]

Para la distancia total se realizó la medición del el camino tomando de referencia los lados de la puerta de acceso 1 de la zona arqueológica. En la figura 3.8 se ve la puerta uno y las marcas donde se comenzó la medición y el punto donde se terminó.

La figura 3.9 muestra la distancia total tomada en cuenta para el proyecto la cual es de 6655 metros.

Teniendo la distancia total y la distancia interpostal se calcula el un numero de postes.

\[
\text{Total de postes} = \frac{6655 \text{m}}{50 \text{m}} = 133.1 \approx 133
\]
Distribución de postes en el área seleccionada.

La tabla 3.1 muestra las distancias de puerta a puerta y la medida de cada una de las puertas que estén dentro de nuestra área de medición. Sumando estas medidas se comprueba la distancia total para el proyecto la cual fue de 6655 metros totales.

En la tabla siguiente se observa los postes que se colocaran entre puertas comprobando que la distribución seleccionada es correcta y la suma de estos postes nos da igual el número de postes totales calculados.

<table>
<thead>
<tr>
<th>Distribución de postes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerta – puerta</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>2-3</td>
</tr>
<tr>
<td>3-4</td>
</tr>
<tr>
<td>4-5</td>
</tr>
<tr>
<td>5-1</td>
</tr>
<tr>
<td>Totales:</td>
</tr>
</tbody>
</table>

COSTO DEL LUMINARIO A COMPARAR

En la tabla 4.6 se muestra el costo total del sistema de iluminación a comparar.
Tabla 4.6: Costo del proyecto de la propuesta a comparar

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio unitario (Pesos $)</th>
<th>Total (Pesos $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lámpara aditivos metálicos 175 watts</td>
<td>133</td>
<td>Pza.</td>
<td>250.00</td>
<td>33,250.00</td>
</tr>
<tr>
<td>2</td>
<td>Balastro solar basic 220v</td>
<td>133</td>
<td>Pza.</td>
<td>600.00</td>
<td>79,800.00</td>
</tr>
<tr>
<td>3</td>
<td>Luminario con:</td>
<td>133</td>
<td>Pza.</td>
<td>1,700.00</td>
<td>226,100.00</td>
</tr>
<tr>
<td></td>
<td>- Carcasa y gatillo de seguridad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reflector de cristal prismático</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reflector de lámpara de aluminio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Porta lámpara E39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Base para fotocelda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Entrada de brazo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inversor</td>
<td>133</td>
<td>Pza.</td>
<td>5,000.00</td>
<td>665,000.00</td>
</tr>
<tr>
<td>5</td>
<td>Fotocelda</td>
<td>133</td>
<td>Pza.</td>
<td>50.00</td>
<td>6,650.00</td>
</tr>
<tr>
<td>6</td>
<td>Panel solar</td>
<td>266</td>
<td>Pza.</td>
<td>5,674.72</td>
<td>1,509,475.52</td>
</tr>
<tr>
<td>7</td>
<td>Batería</td>
<td>532</td>
<td>Pza.</td>
<td>6,844.00</td>
<td>3,641,008.00</td>
</tr>
<tr>
<td>8</td>
<td>Poste cónico circular</td>
<td>133</td>
<td>Pza.</td>
<td>4,555.32</td>
<td>605,857.56</td>
</tr>
<tr>
<td>9</td>
<td>Brazo con percha para poste metálico</td>
<td>133</td>
<td>Pza.</td>
<td>285.82</td>
<td>38,014.06</td>
</tr>
<tr>
<td>10</td>
<td>Juego de 4 anclas con herrajes</td>
<td>133</td>
<td>Pza.</td>
<td>857.47</td>
<td>114,043.51</td>
</tr>
<tr>
<td>11</td>
<td>Base de concreto</td>
<td>133</td>
<td>Pza.</td>
<td>5,750.00</td>
<td>764,750.00</td>
</tr>
<tr>
<td>12</td>
<td>Proyecto de ingeniería</td>
<td></td>
<td></td>
<td></td>
<td>1,009,108.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisa</th>
<th>M.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td>7,683,948.65</td>
</tr>
<tr>
<td>I.V.A.</td>
<td>1,229,431.78</td>
</tr>
<tr>
<td>Total</td>
<td>8,913,380.43</td>
</tr>
</tbody>
</table>
RESULTADOS

Los resultados que se obtuvieron anteriormente se registraran en la tabla 4.6, observándose los precios totales de cada sistema a comparar.

En la tabla 4.7 se muestra los precios de ambos sistemas para su comparación.

<table>
<thead>
<tr>
<th>Tabla 4.7 Precios de sistemas propuestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminario LED</td>
</tr>
<tr>
<td>Inversión</td>
</tr>
<tr>
<td>Costo Energía</td>
</tr>
<tr>
<td>Mantenimiento</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Económicamente se refleja que es más barato el sistema diseñado con luminarios de aditivos metálicos, pero debido a que lleva un mayor número de elementos se contamina más al medio ambiente, por lo que se realizó un estudio de huella de carbono.

En el anexo C. se especifica el costo de la energía así como la tarifa empleada, de igual forma se manejan los costos de todo el proyecto de manera desglosada.
HUELLA DE CARBONO PARA ADITIVOS METÁLICOS

En la tabla 4.8 se muestra el cálculo de los watts hora por lámpara

Tabla 4.8 Calculo de watts-hora por lámpara

<table>
<thead>
<tr>
<th>Watts por lámpara</th>
<th>horas</th>
<th>Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>13</td>
<td>2,275.00</td>
</tr>
</tbody>
</table>

En la tabla 4.9 se realizó el cálculo para el sistema completo

Tabla 4.9 Calculo de kilowatts -hora en el sistema completo

<table>
<thead>
<tr>
<th>kWh/lámpara</th>
<th>sistemas</th>
<th>Total kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.275</td>
<td>133</td>
<td>302.575</td>
</tr>
</tbody>
</table>

En la tabla 4.10 se realizó el cálculo de la contaminación que provoca todo el sistema de iluminación al día

Tabla 4.10 Cálculo de la contaminación al día

<table>
<thead>
<tr>
<th>Kwh</th>
<th>Kg CO2</th>
<th>Kg CO2/ día</th>
</tr>
</thead>
<tbody>
<tr>
<td>302.575</td>
<td>0.51</td>
<td>154.31</td>
</tr>
</tbody>
</table>

En la tabla 4.11 se muestra la contaminación que causaría el sistema de aditivos metálicos al año

Tabla 4.11 Calculo de contaminación al año

<table>
<thead>
<tr>
<th>Kg CO2/día</th>
<th>Días al año</th>
<th>Kg CO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>154.31325</td>
<td>365</td>
<td>56,324.34</td>
</tr>
</tbody>
</table>

En la tabla 4.12 se muestra el cálculo de la contaminación a 30 años que es el tiempo propuesto a causa de la vida útil de un panel solar.

Tabla 4.12 Calculo de la contaminación a 30 años

<table>
<thead>
<tr>
<th>Kg CO2/año</th>
<th>Años proyecto</th>
<th>Kg CO2 a 30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,324.34</td>
<td>30</td>
<td>1,689,730.09</td>
</tr>
</tbody>
</table>
HUella de carbono para LED

En la tabla 4.13 se hace el cálculo de los watts-hora por lámpara

<table>
<thead>
<tr>
<th>Watts por lámpara</th>
<th>horas</th>
<th>Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>585.00</td>
</tr>
</tbody>
</table>

En la tabla 4.14 se realizó el cálculo de los kilowatts –hora para el sistema completo

<table>
<thead>
<tr>
<th>kWh/ lámpara</th>
<th>sistemas</th>
<th>Total kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>196</td>
<td>114.66</td>
</tr>
</tbody>
</table>

En la tabla 4.15 se muestra el cálculo de la contaminación al día de todo el sistema

<table>
<thead>
<tr>
<th>Kwh</th>
<th>Kg. CO2</th>
<th>Kg CO2/ día</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.66</td>
<td>0.51</td>
<td>58.48</td>
</tr>
</tbody>
</table>

En la tabla 4.16 se muestra lo que contaminaría al año el sistema de iluminación de lámparas LED

<table>
<thead>
<tr>
<th>Kg CO2/día</th>
<th>Días al año</th>
<th>Kg CO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.48</td>
<td>365</td>
<td>21,343.96</td>
</tr>
</tbody>
</table>

Se hace el cálculo de la contaminación a 30 años que es el tiempo propuesto a causa de la vida útil de un panel solar.

<table>
<thead>
<tr>
<th>Kg CO2/año</th>
<th>Años proyecto</th>
<th>Kg CO2 a 30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,343.96</td>
<td>30</td>
<td>640,318.77</td>
</tr>
</tbody>
</table>
En la tabla 4.18 se compara la contaminación de cada sistema de iluminación mostrando que el sistema de iluminación mediante luminarios LED es más limpio, ya que su contaminación está 1,009,411.32 por debajo de las lámparas de Aditivos metálicos.

Tabla 4.18 Comparación de contaminación

<table>
<thead>
<tr>
<th></th>
<th>Lámpara LED (Kg CO2 30 años)</th>
<th>Lámpara A.M. (Kg. CO2 30 años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminación</td>
<td>640,318.77</td>
<td>1,649,730.09</td>
</tr>
</tbody>
</table>
CONCLUSIONES

A fin de cumplir con los requerimientos indicados por el INAH de la no instalación de una red eléctrica aérea o subterránea y con ello se evita escarbar en dicha zona, así como eliminar la contaminación visual; se compararon dos tipos de luminario, el propuesto para el proyecto por su practicidad y propiedades, obteniendo así el más óptimo para la implementación del proyecto, el otro luminario que se estudió para la comparación fue un luminario de aditivos metálicos, aunque resultando este último más barato económicamente hablando; se realizó un estudio de huella de carbono para ver como afectaban dichos sistemas al medio ambiente buscando un sistema limpio para el planeta, ya que lo que se busca hoy en día es reducir los niveles de contaminación que se generan; en este trabajo se desarrolló el proyecto integral para la instalación y colocación del luminario propuesto, en el que se especifican las normas aplicables al diseño de base para el poste el cual va a nivel de suelo siendo capaz de soportar el peso de todo el luminario y sin la necesidad de escarbar.

Figura C. 1 Camino empedrado que no cuenta con sistema de iluminación
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA

Para elegir el sistema propuesto se tomó en cuenta que el luminario cumpliera con las normas indicadas en el anexo A, además de que por su eficiencia y durabilidad fueron las más indicadas para el proyecto, resultando un sistema de iluminación amigable con el ambiente ya que su contaminación de CO$_2$ es considerablemente menor a la de aditivos metálicos, alimentado por paneles fotovoltaicos aislados de la red eléctrica mediante luminarios de tipo LED.

Tabla C.1 Diferencias tecnológicas

<table>
<thead>
<tr>
<th></th>
<th>LED</th>
<th>Aditivos Metálicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iluminación</td>
<td>Normal</td>
<td>Excesiva</td>
</tr>
<tr>
<td>Costo</td>
<td>Elevado</td>
<td>Medio</td>
</tr>
<tr>
<td>Tiempo de vida</td>
<td>Alto</td>
<td>Bajo</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>Bajo</td>
<td>Alto</td>
</tr>
<tr>
<td>Contaminación visual *</td>
<td>Bajo</td>
<td>Alto</td>
</tr>
<tr>
<td>Contaminación **</td>
<td>Muy bajo</td>
<td>Excesivo</td>
</tr>
</tbody>
</table>

(*): Indica la obstrucción visual dentro del entorno.
(**): Contempla los niveles de CO$_2$ emitidos por los sistemas.

Como se muestra en la tabla C1 el sistema propuesto es más competente en los puntos indicados además de tener características de durabilidad y eficiencia cuenta con un armado sumamente sencillo y cumple los requerimientos mínimos de normatividad en eficiencia luminosa de lámparas LED marcados en la NOM-031-ENER-2012 teniendo un rendimiento de color optimo del 70%, al igual que su eficiencia luminosa de 112.2 lm/w superando la mínima requerida por la norma

En el anexo C se integra las especificaciones a detalle del estudio económico así como la visualización del luminario propuesto (XSP2).
GLOSARIO

Balastro
Dispositivo utilizado con lámpara de descarga para estabilizar la corriente en la misma.

Brillo
Característica de una sensación visual según la cual un área parece emitir más o menos luz.

Bulbo
Envolvente externo de un fuente luminosa, constituido usualmente de vidrio o cuarzo.

Campo visual
Extensión del espacio físico visible desde una posición dada.
Unidad de la intensidad luminosa, en el Sistema Internacional, la candela es igual a 1 lumen por estereorradián.

Candela
Internacional, la candela es igual a 1 lumen por estereorradián.

Cebador
Dispositivo para encender la lámpara de descarga.

Coeficiente de utilización
Cociente entre el flujo luminoso que llega al plano de trabajo y el emitido por los luminarios.

Color
Características del estímulo luminoso (fuente de luz u objeto) que da lugar a la sensación visual.

Confort visual
Característica que manifiesta la ausencia de perturbaciones procedentes del entorno visual.

Contraste
Sensación subjetiva de la diferencia en apariciencia de dos partes de un campo visual, se cuantifica como \(\frac{(L2-L1)}{L1}\) ; siendo L1: Luminancia dominante de fondo, L2: Luminancia del objeto.

Descarga
Flujo de carga eléctrica a través de gas, o material sólido o líquido.

Deslumbramiento
Es un fenómeno de la visión que produce molestia o disminución en la capacidad para distinguir objetos. Inmovilización aparente o cambio del movimiento de un objeto al ser iluminado con luz de una determinada frecuencia temporal e intensidad.

Efecto estroboscópico
<table>
<thead>
<tr>
<th>Concepto</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficacia luminosa</td>
<td>También llamado rendimiento luminoso, es el cociente entre el flujo luminoso producido y la potencia eléctrica consumida y nos da la eficiencia de la lámpara, en cuanto mayor sea la eficacia luminosa, mas flujo luminoso dará para la misma energía.</td>
</tr>
<tr>
<td>Espacio de trabajo</td>
<td>Espacio designado a una o más personas para desarrollar una tarea.</td>
</tr>
<tr>
<td>Factor de depreciación de los lúmenes de la lámpara</td>
<td>Factor usado en cálculos de un sistema de iluminación, de relación del flujo luminoso inicial emitido por una lámpara con respecto al proporcionado por una lámpara en un momento determinado de su vida.</td>
</tr>
<tr>
<td>Factor de depreciación por suciedad de luminario</td>
<td>Factor usado en cálculos de sistemas de iluminación, que relaciona la iluminación inicial proporcionada por una luminaria nueva y limpia, con respecto a la emitida por una socia.</td>
</tr>
<tr>
<td>Factor de mantenimiento</td>
<td>Producto del factor de depreciación de los lúmenes de la lámpara por el factor de depreciación por suciedad del luminario.</td>
</tr>
<tr>
<td>Flujo luminoso</td>
<td>Energía luminosa radiada al espacio por unidad de tiempo.</td>
</tr>
<tr>
<td>Flujo luminoso (ϕ)</td>
<td>Es la unidad total de luz radiada o emitida por una fuente durante un segundo, en todas direcciones, su unidad es el Lúmen (lm).</td>
</tr>
<tr>
<td>iluminación €</td>
<td>Aplicación de radiación visible a un objeto, unidad es el Lux.</td>
</tr>
<tr>
<td>Iluminación general</td>
<td>Iluminación diseñada para iluminar todo con la misma iluminancia aproximadamente.</td>
</tr>
<tr>
<td>Iluminancia</td>
<td>Flujo incidente por unidad de área en una superficie iluminada.</td>
</tr>
<tr>
<td>Índice de deslumbramiento unificado (UGR)</td>
<td>Índice que define numéricamente los límites de deslumbramiento. Este índice va de 10 a 30, y es una...</td>
</tr>
</tbody>
</table>
forma de determinar el tipo de luminaria que debe usarse.

Índice de eficiencia energética
Cociente entre la potencia eléctrica total instalada y la superficie de la instalación referida a una iluminancia de 100 lux en servicio.

Índice de reproducción cromática
Grado con el cual los colores de objetos iluminados con esa fuente están conformes a los observados al iluminar con iluminantes de referencia, IRC o Ra. Es la relación que existe entre el flujo luminoso contenido y un Angulo sólido cualquiera, cuyo eje coincida con la dirección a considerar, su unidad es la candela (cd).

Intensidad luminosa (I)
fuente luminosa que emite radiaciones en las regiones adyacentes al espectro visible

Lámpara
Unidad de flujo luminoso que se define como el flujo luminoso emitido en un ángulo sólido de un estereorradián, por un manantial luminoso cuya intensidad luminosa es igual a una candela

Lumen
Intensidad luminosa radiada por unidad de superficie

Luminancia
Aparato que distingue, filtra o transforma la radiación luminosa procedente de una lámpara y que incluyen todos los elementos necesarios para fijar y proteger las lámparas y conectarlas a la fuente de energía.

Luminarias
Forma de energía radiante que se valúa en cuanto a su capacidad para producir la sensación de la visión. Plano horizontal sobre el cual se calculara la iluminancia media. Usualmente para oficinas y similar se considera 0.85 metros

Lux
Emisión o transferencia de energía en formas de ondas electromagnéticas o partículas.

Plano de trabajo
cociente entre el flujo reflejado por una superficie y el recibido
Reflector

Parte de un luminario que modifica la distribución de la luz de una lámpara sin alterar la longitud de onda de sus componentes monocromáticas.

Rendimiento de un luminario

Cociente entre el flujo emitido por un luminario y el flujo emitido por las lámparas que incorpora dicho luminario.

Es un valor numérico que nos relaciona el efecto que produce una fuente de luz sobre el color de los objetos que ilumina, en comparación con el color que representarían al ser iluminados por una fuente de luz perfecta (con I.R.C. 100). Este parámetro define la calidad de la luz de una determinada lámpara.

Rendimiento del color (I.R.C. O Ra)

Un sistema es un grupo de componentes que pueden funcionar recíprocamente para lograr un propósito común. Son capaces de reaccionar juntos al ser estimulados por influencias externas. El sistema no está afectado por sus propios egresos y tiene límites específicos en base a todos los mecanismos de retroalimentación significativos (Spedding 1979)

Temperatura de color

Es la temperatura a la que hemos de elevar el cuerpo negro para que emita el mismo color que el de la fuente luminosa a comparar. Unidad es el grado kelvin.

Vida media

El número de horas de funcionamiento de una lámpara. En lámparas incandescentes, la vida media se rige por el fallo del 50% de las lámparas. En lámparas de descarga y los LEDs, la vida media se calcula hasta la reducción del flujo luminoso de la instalación al 50% debido al fallo de lámparas y al descenso del flujo luminoso.
Indica el tiempo de funcionamiento de una lámpara en el cual el flujo luminoso desciende y tiene que ser sustituida.

Vida útil

SIGLAS

CFE: Comisión Federal de Electricidad
CONACULTA: Consejo Nacional para la Cultura y las Artes
DPEA: Densidad de Potencia Eléctrica para Alumbrado
IES: Illuminating Engineering Society
IESNA: Illuminating Engineering Society of North América
INAH: Instituto Nacional de Antropología e Historia
LED: Diodo Emisor de Luz
NOM: Norma Oficial Mexicana
UNESCO: United Nations Educational, Scientific and Cultural Organization (Organización de las Naciones Unidas para la Educación, la Ciencia y la cultura)
ÍNDICE DE FIGURAS

CAPÍTULO 1

Figura 1. 1 Ubicación del valle de Teotihuacán (México-Desconocido, 2011) 3
Figura 1. 2 Concepto de iluminación (Enríquez Harper, Gilberto, 2007) 4
Figura 1. 3 Flujo luminoso (Hernández David, Iluminación, 2014) ... 5
Figura 1. 4 Luminancia. (Hernández David, Iluminación, 2014) ... 6
Figura 1. 5 Rendimiento del color
(http://www.fantastik.it/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8
d27136e95/g/i/giant-led-lamp-dark_4.jpg) .. 9
Figura 1. 6 Poste solar con luminaria LED (esco-tel, s.f.) ... 11
Figura 1. 7 Diodo emisor de luz (LED)
(http://4.bp.blogspot.com/PeyBCgYxrhM/T86kmvfJM3I/AAAAAAAAABc/eUzgnuui6Sg/s1600/Funcionamiento+del+LED.jpg) ... 12
Figura 1. 8 Tiras de LED’s (http://www.se-led.com/images/Long-Lifespan-5050SMD-LED-Module.jpg) .. 14
Figura 1. 9 Módulos de LED’s (http://www.tme.eu/u/NewProducts1/l-albda.jpg) 14
Figura 1. 10 Lámparas LED’s (http://www.clasf.pe/ilumina-tu-hogar-con-tubos-led-en-lima-2284010/) .. 15
Figura 1. 11 Tubos LED’s (http://www.svled.com/es/big/Luminarias-publica-led.jpg)... 15
Figura 1. 12 luminaria led (alumbrado publica) http://img.diytrade.com/cdimg/1530439/22975490/0/1313632426/LED_Wall_Wash_Light .jpg)) 16
Figura 1. 13 Baño de luz (LED’s) (http://www.monografias.com/trabajos93/analisis-comparativo-lamarpas/image019.jpg) .. 16
Figura 1. 14 Partes de una luminaria LED (http://heliotech.com.mx/images/esquema.jpg) ... 18

CAPÍTULO 2

Figura 2. 1 Poste solar con una luminaria autónoma para alumbrado público (esco-tel, s.f.) .. 22
Figura 2. 2 Distribución tres bolillo (NOM-013-ENER-2013, 2013) .. 27
Figura 2. 3 Distribución unilateral (NOM-013-ENER-2013, 2013) .. 28
Figura 2. 4 Distribución Bilateral Opuesta (NOM-013-ENER-2013, 2013) 28
Figura 2. 5 Distribución Central Doble (NOM-013-ENER-2013, 2013) 29
Figura 2. 6 Luminario Público con Apuntamiento Vertical Fijo (esco-tel, s.f.). 30
Figura 2. 7 Luminaria de poste elevado (General Electric, 2014) ... 30
Figura 2. 8 Curvas Polares de un Luminario para Alumbrado Exterior Transversal y Vertical Marca (General Electric, 2014) ... 31
Figura 2. 9 Curva ISO-Candela de un Luminario de Alumbrado Exterior Marca (General Electric, 2014) ... 31
Figura 2. 10 Luminario de Alumbrado Público Teniendo como Referencia el Centro de Este Conocido (Hernández David, 2014) ... 32
Figura 2. 11 Curva de Coeficientes de Utilización de un Luminario Público, (General Electric, 2014) .. 32
CAPÍTULO 3

Figura 3. 1 Sistema de iluminación propuesto (google, 2015) ... 51
Figura 3. 2 Curva tipo 3 Media .. 52
Figura 3. 3 Curvas de depreciación luminosa para luminarios IESNA ... 53
Figura 3. 4 Distancia interpostal (S) ... 54
Figura 3. 5 Dimensiones del camino y luminario propuesto .. 55
Figura 3. 6 Coeficiente de utilización .. 56
Figura 3. 7 Punto de partida y final de la medición del camino. (google, 2015) 57
Figura 3. 8 Distancia total medida para la propuesta (google, 2015) .. 58
Figura 3. 9 Distancia total (google, 2015) ... 59
Figura 3. 10 Distancia de puerta 1 a puerta 2 (google, 2015) ... 59
Figura 3. 11 Distancia de puerta 2 a puerta 3 (google, 2015) ... 60
Figura 3. 12 Distancia de puerta 3 a puerta 4 (google, 2015) ... 60
Figura 3. 13 Distancia de puerta 4 a puerta 5 (google, 2015) .. 61
Figura 3. 14 Distancia de puerta 5 a puerta 1 (google, 2015) .. 61
Figura 3. 15 Detalle de pie de poste ... 65
Figura 3. 16 Detalle de la placa base ... 66
Figura 3. 17 Detalle tornillo estructural .. 66

CAPÍTULO 4
Figura 4. 1 Curvas de depreciación luminosa para luminarios IESNA 73
Figura 4. 2 Distancia interpostal (S) .. 75
Figura 4. 3 Dimensiones del camino y luminario propuesto. 75
Figura 4. 4 Coeficiente de utilización Luminario a comparar 76

CONCLUSIONES
Figura C. 1 Camino empedrado que no cuenta con sistema de iluminación 84
ÍNDICE DE ECUACIONES

\[\text{Lux} = \frac{\text{lumen}}{\text{m}^2} \] \hspace{1cm} (1.1)

\[E = \frac{\text{flujo luminoso}}{\text{Unidad de superficie}} \] \hspace{1cm} (1.2)

\[\text{lm} = \text{cd} \times \text{sr} \] \hspace{1cm} (1.3)

\[I = \frac{\text{Energía de luz}}{\text{Angulo sólido}} \] \hspace{1cm} (1.4)

\[\eta = \frac{\phi}{\omega} \] \hspace{1cm} (1.5)

\[\text{DPEA} = \frac{\text{carga total conectada para alumbrado}}{\text{área total iluminada}} \] \hspace{1cm} (2.1)

\[\text{S} = \frac{\text{lumenes luminario} \times \text{C.U.} \times \text{F.M.}}{\text{E} \times \text{Ancho de arroyo}} \] \hspace{1cm} (2.2)

\[\text{C. U. Total} = \text{C. U. L. CALLE} + \text{C. U. L. CASA} \] \hspace{1cm} (2.3)

\[\text{F. M} = \text{L. L. D.} \times \text{L. D. D} \] \hspace{1cm} (2.4)

\[\text{Total de postes} = \frac{\text{distancia total}}{\text{distancia interpostal}} \] \hspace{1cm} (3.1)
ÍNDICE DE TABLAS

CAPÍTULO 2
Tabla 2.1 (Tabla 2) Valores máximos de DPEA, iluminancia mínima promedio y valor máximo de la relación de uniformidad promedio para vialidades con pavimento tipo R2 y R3 (NOM-013-ENER-2013, 2013)---26
Tabla 2.2 Ambientes para Determinar el Valor de Depreciación por Polvo de un Luminario según la IESNA (Illuminating Engineering Society, 1947)-----------------------------36

CAPÍTULO 3
Tabla 3.1 Mediciones realizadas entre puertas y longitud de las mismas.........................58
Tabla 3.2 Distribución de postes..62
Tabla 3.3 Descripción del material utilizado para la base ...64

CAPÍTULO 4
Tabla 4.1 Costo por precio unitario---69
Tabla 4.2 Precio de mano de obra---70
Tabla 4.3 Mantenimiento led a 30 años--71
Tabla 4.4 Comparación de situación actual contra propuesta------------------------------------72
Tabla 4.5 Distribución de postes---78
Tabla 4.6 Costo del proyecto de la propuesta a comparar--79
Tabla 4.7 Precios de sistemas propuestos--80
Tabla 4.8 Calculo de watts-hora por lámpara---81
Tabla 4.9 Calculo de kilowatts -hora en el sistema completo-------------------------------------81
Tabla 4.10 Cálculo de la contaminación al día---81
Tabla 4.11 Calculo de contaminación al año--81
Tabla 4.12 Calculo de la contaminación a 30 años---81
Tabla 4.13 Calculo de watts-hora por lámpara---82
Tabla 4.14 Calculo de kilowatts en el sistema completo--82
Tabla 4.15 Calculo de contaminación al día--82
Tabla 4.16 Calculo de contaminación al año--82
Tabla 4.17 Calculo de contaminación a 30 años---82
Tabla 4.18 Comparación de contaminación--83

CONCLUSIONES
Tabla C.1 Diferencias tecnológicas...85
afinidad, & electrica. (s.f.). afinidad. Recuperado el Febrero de 2015, de http://www.afinidadelectrica.com

artinaid. (s.f.). artinaid. Obtenido de http://www.artinaid.com

esco-tel. (s.f.). esco-tel sistemas de energia solar. Recuperado el Febrero de 2015, de http://www.esco-tel.com

gasnatural,fenosa. (s.f.). gasnaturalfenosa. Recuperado el 2015, de hogar, eficiencia energetica :

INAH. (s.f.). INSTITUTO NACIONAL DE ANTROPOLOGÍA E HISTORIA. Recuperado el Septiembre de 2014, de Zona Arqueologica de Teotihuacan: http://www.inah.gob.mx/component/content/article/44-lista-de-zonas-arqueologicas/6036-zona-arqueologica-teotihuacan

ledbox. (s.f.). iluminacion led. Recuperado el Febrero de 2015, de http://www.ledbox.es

ANEXO A

NORMAS
1. **Objetivo**

Esta Norma Oficial Mexicana tiene por objeto establecer niveles de eficiencia energética en términos de valores máximos de Densidad de Potencia Eléctrica para Alumbrado (DPEA), así como la iluminancia promedio para alumbrado en vialidades en las diferentes aplicaciones que se indican en la presente norma, con el propósito de que se diseñen o construyan bajo un criterio de uso eficiente de la energía eléctrica, mediante la optimización de diseños y la aplicación de equipos y tecnologías que incrementen la eficacia sin menoscabo de los requerimientos visuales.

2. **Campo de aplicación**

El campo de aplicación de esta Norma Oficial Mexicana comprende todos los sistemas nuevos de iluminación para vialidades y estacionamientos públicos abiertos, cerrados o techados, así como las ampliaciones o modificaciones de instalaciones ya existentes que se construyan en el territorio nacional, independientemente de su tamaño y carga conectada.

Las aplicaciones de instalaciones cubiertas bajo esta Norma Oficial Mexicana incluyen:

a) Vialidades

b) Estacionamientos públicos abiertos, cerrados o techados

NOTA.- Entiéndase como modificación el cambio de luminarios, distancia interpostal, etc. o cualquier cambio en el sistema de iluminación.

2.1. **Excepciones**

No se consideran dentro del campo de aplicación de esta Norma Oficial Mexicana a los sistemas de alumbrado que se instalen en los siguientes lugares:

- Aeropuertos: sistemas de aproximación, sistemas dependientes de precisión para un aterrizaje correcto, luces de señalización de pistas, rodajes y plataformas, zonas de maniobras, de pernocta y similares
- Alumbrado de emergencia
- Alumbrado dentro de predios de viviendas unifamiliares
- Alumbrado dentro de los predios de viviendas plurifamiliares (condominios verticales y horizontales)
- Alumbrado ornamental de temporada
- Alumbrado para ferias
- Alumbrado para plataformas marinas, faros y similares
- Alumbrado temporal en obras de construcción
- Anuncios luminosos
- Áreas de vigilancia especial, garitas, retenes y similares de seguridad
- Áreas típicamente regidas por relaciones laborales como andenes, muelles, patios de maniobra y almacenamiento, áreas de carga y descarga, áreas de manufactura de astilleros y similares
- Juegos mecánicos
- Lugares de resguardo de bicicletas
- Nodos y distribuidores viales
- Paseos exclusivos de jinetes
- Rampas, accesos y escaleras que formen parte de estacionamientos cerrados o techados.
- Señalización de vialidades y carreteras, semaforización.
- Túneles y pasos a desnivel

3. Referencias
Para la correcta aplicación de esta Norma Oficial Mexicana se deben consultar las siguientes normas vigentes o las que las sustituyan:
- NMX-J-507/1-ANCE-2010, Iluminación - Coeficientes de utilización de luminarios para alumbrado público de vialidades Especificaciones.
- NMX-J-619-ANCE-2009, Iluminación Definiciones y terminología

4. Definiciones
Para efectos de esta Norma Oficial Mexicana los siguientes términos se definen como se establece en este capítulo. Los términos no definidos tienen su acepción ordinariamente aceptada dentro del contexto en el que son usados, o bien, están definidos en la NMX-J-619-ANCE-2009 u otras publicaciones con carácter oficial.

Alumbrado público. Sistema de iluminación que tiene como finalidad principal el proporcionar condiciones mínimas de iluminación para el tránsito seguro de peatones y vehículos en vialidades y espacios.
Área total a iluminar. Es la superficie total que será iluminada por el sistema de alumbrado, sin incluir las áreas destinadas a aceras y camellones.
Autopistas. Vialidades con alto tránsito vehicular de alta velocidad con control total de acceso y sin cruces al mismo nivel.
Carreteras. Vialidades que interconectan dos poblaciones con cruces al mismo nivel.
Coeficiente de utilización. Es la relación entre el flujo luminoso emitido por el luminario que incide sobre el plano de trabajo y el flujo luminoso que emite(n) la(s) lámpara(s) solas del luminario.
Densidad de Potencia Eléctrica para Alumbrado (DPEA). Índice de la carga conectada para alumbrado por superficie iluminada, se expresa en W/m2.
Estacionamiento público. Espacio de servicio público abierto, cerrado o techado, independiente de cualquier comercio o edificio no residencial, cuya finalidad principal es el resguardo seguro de vehículos automotores.
Flujo luminoso total nominal: flujo luminoso total emitido de una fuente de luz, en su posición ideal, que declara el fabricante.
Iluminancia (E). Es la relación del flujo luminoso incidente en una superficie por unidad de área; la unidad de medida es el lux (lx).

Luminancia (L). La luminancia en un punto de una superficie y en una dirección dada, se define como la intensidad luminosa de un elemento de esa superficie, dividida por el área de la proyección ortogonal de este elemento sobre un plano perpendicular a la dirección considerada. La unidad de medida es la candela por metro cuadrado (cd/m²).

Luminancia de deslumbramiento (Ld). Es la luminancia que se superpone a la imagen que se forma en la retina y que reduce el contraste, este fenómeno se debe al brillo de las fuentes de luz o las áreas iluminadas, lo que provoca una pérdida del desempeño visual.

Nivel de iluminación: cantidad de flujo luminoso por unidad de área medido en un plano de trabajo donde se desarrollan actividades, expresada en luxes.

Sistema de alumbrado. Conjunto de equipos, aparatos y accesorios relacionados entre sí para suministrar luz a una superficie o espacio.

Superposte. Poste para alumbrado público que tiene una altura mínima de 15 m y un conjunto de más de tres luminarios.

Relación de uniformidad. Se define como la distribución de los niveles de iluminación sobre el plano de trabajo y se puede expresar como la relación del nivel de iluminación promedio y el mínimo del área a evaluar.

Vialidad. Es el área definida y dispuesta adecuadamente para el tránsito seguro y confortable de los usuarios.

Vías de acceso controlado y vías rápidas: Vialidades que presentan dos o más secciones centrales y laterales, en un solo sentido con separador central, así como con accesos y salidas sin cruces.

Vías primarias y colectoras. Son vialidades que sirven para conectar el tránsito entre las vías principales y las secundarias.

Vías principales y ejes viales. Vialidades que sirven como red principal para el tránsito de paso; conecta áreas de generación de tráfico y vialidad importante de acceso a la ciudad. Generalmente tiene alto tránsito peatonal y vehicular nocturno y puede tener circulación vehicular en contra flujo. Típicamente no cuenta con pasos peatonales.

Vías secundarias. Vialidades usadas fundamentalmente para acceso directo a zonas residenciales, comerciales e industriales, se clasifican a su vez en:

Tipo A. Vía de tipo residencial con alto tránsito peatonal nocturno, tránsito vehicular de moderado a alto, y con moderada existencia de comercios.

Tipo B. Vía de tipo residencial con moderado tránsito peatonal nocturno, tránsito vehicular de bajo a moderado y con moderada existencia de comercios.

Tipo C. Vía de acceso industrial que se caracteriza por bajo tránsito peatonal nocturno, moderado tránsito vehicular y baja actividad comercial.

5. Clasificación

Para los fines de esta Norma Oficial Mexicana, las vialidades y estacionamientos se clasifican en:
5.1. Vialidades
5.1.1. Autopistas y carreteras
5.1.2. Vías de acceso controlado y vías rápidas
5.1.3. Vías principales y ejes viales
5.1.4. Vías primarias y colectoras
5.1.5. Vías secundarias
5.2. Estacionamientos públicos
5.2.1. Abiertos
5.2.2. Cerrados o techados

6. Especificaciones

Los sistemas de alumbrado deben cumplir con las Normas Oficiales Mexicanas vigentes en materia de eficiencia energética que les aplique.

6.1. Vialidades

Para los sistemas de alumbrado de las vialidades indicadas en el inciso 5.1 de la presente Norma Oficial Mexicana, los luminarios cuya fuente de iluminación sea una lámpara de descarga de alta intensidad deben cumplir con el coeficiente de utilización establecido en la NMX-J-507/1-ANCE-2010 vigente o la que la sustituya.

Los sistemas de alumbrado de las vialidades indicadas en el inciso 5.1 de la presente Norma Oficial Mexicana, deben cumplir con lo establecido en las Tablas 1, 2 y 3, cuando en el cálculo del sistema se haya utilizado la iluminancia; en el caso de utilizarse valores de luminancia, se debe cumplir con lo especificado en la Tabla 4.
Tabla 1. Valores máximos de DPEA, iluminancia mínima promedio y valor máximo de la relación de uniformidad promedio para vialidades con pavimento tipo R1

<table>
<thead>
<tr>
<th>Clasificación de Vialidad</th>
<th>Iluminancia mínima promedio [lx]</th>
<th>Relación de uniformidad promedio máxima E_{prom}/E_{prom}</th>
<th>DPEA [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ancho de calle [m]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 9,0</td>
</tr>
<tr>
<td>Autopistas y carreteras</td>
<td>4</td>
<td>3 a 1</td>
<td>0,32</td>
</tr>
<tr>
<td>Vías de acceso controlado y vías rápidas</td>
<td>10</td>
<td>3 a 1</td>
<td>0,71</td>
</tr>
<tr>
<td>Vías principales y ejes viales</td>
<td>12</td>
<td>3 a 1</td>
<td>0,86</td>
</tr>
<tr>
<td>Vías primarias y colectoras</td>
<td>8</td>
<td>4 a 1</td>
<td>0,56</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo A</td>
<td>6</td>
<td>6 a 1</td>
<td>0,41</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo B</td>
<td>5</td>
<td>6 a 1</td>
<td>0,35</td>
</tr>
<tr>
<td>Vías secundarias industrial Tipo C</td>
<td>3</td>
<td>6 a 1</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Tabla 2. Valores máximos de DPEA, iluminancia mínima promedio y valor máximo de la relación de uniformidad promedio para vialidades con pavimento tipo R2 y R3

<table>
<thead>
<tr>
<th>Clasificación de Vialidad</th>
<th>Iluminancia mínima promedio [lx]</th>
<th>Relación de uniformidad promedio máxima E_{prom}/E_{prom}</th>
<th>DPEA [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ancho de calle [m]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 9,0</td>
</tr>
<tr>
<td>Autopistas y carreteras</td>
<td>6</td>
<td>3 a 1</td>
<td>0,41</td>
</tr>
<tr>
<td>Vías de acceso controlado y vías rápidas</td>
<td>14</td>
<td>3 a 1</td>
<td>1,01</td>
</tr>
<tr>
<td>Vías principales y ejes viales</td>
<td>17</td>
<td>3 a 1</td>
<td>1,17</td>
</tr>
<tr>
<td>Vías primarias y colectoras</td>
<td>12</td>
<td>4 a 1</td>
<td>0,86</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo A</td>
<td>9</td>
<td>6 a 1</td>
<td>0,64</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo B</td>
<td>7</td>
<td>6 a 1</td>
<td>0,49</td>
</tr>
<tr>
<td>Vías secundarias industrial Tipo C</td>
<td>4</td>
<td>6 a 1</td>
<td>0,32</td>
</tr>
</tbody>
</table>
Tabla 3. Valores máximos de DPEA, iluminancia mínima promedio y valor máximo de la relación de uniformidad promedio para vialidades con pavimento tipo R4

<table>
<thead>
<tr>
<th>Clasificación de Vialidad</th>
<th>Iluminancia mínima promedio [lx]</th>
<th>Relación de uniformidad promedio máxima E_{prom}/E_{min}</th>
<th>DPEA [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ancho de calle [m]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 9,0</td>
<td>≥ 9,0 y < 10,5</td>
</tr>
<tr>
<td>Autopistas y carreteras</td>
<td>5</td>
<td>3 a 1</td>
<td>0,35</td>
</tr>
<tr>
<td>Vías de acceso controlado y vías rápidas</td>
<td>13</td>
<td>3 a 1</td>
<td>0,94</td>
</tr>
<tr>
<td>Vías principales y ejes viales</td>
<td>15</td>
<td>3 a 1</td>
<td>1,06</td>
</tr>
<tr>
<td>Vías primarias y colectoras</td>
<td>10</td>
<td>4 a 1</td>
<td>0,71</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo A</td>
<td>8</td>
<td>6 a 1</td>
<td>0,56</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo B</td>
<td>6</td>
<td>6 a 1</td>
<td>0,41</td>
</tr>
<tr>
<td>Vías secundarias industrial Tipo C</td>
<td>4</td>
<td>6 a 1</td>
<td>0,32</td>
</tr>
</tbody>
</table>

Tabla 4. Valores máximos de DPEA, luminancia mínima promedio, relaciones de uniformidad máximas y la relación de deslumbramiento y luminancia, para vialidades

<table>
<thead>
<tr>
<th>Clasificación de Vialidad</th>
<th>Luminancia mínima promedio L_{prom} [cd/m²]</th>
<th>Relaciones de uniformidad máximas</th>
<th>Relación de luminancia de deslumbramiento L_d / L_{prom}</th>
<th>DPEA [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L_{max} / L_{prom}</td>
<td>L_{max} / L_{min}</td>
<td>Ancho de calle [m]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 9,0</td>
</tr>
<tr>
<td>Autopistas y carreteras</td>
<td>0,4</td>
<td>3,5 a 1</td>
<td>6 a 1</td>
<td>0,3 a 1</td>
</tr>
<tr>
<td>Vías de acceso controlado y vías rápidas</td>
<td>1,0</td>
<td>3 a 1</td>
<td>5 a 1</td>
<td>0,3 a 1</td>
</tr>
<tr>
<td>Vías principales y ejes viales</td>
<td>1,2</td>
<td>3 a 1</td>
<td>5 a 1</td>
<td>0,3 a 1</td>
</tr>
<tr>
<td>Vías primarias y colectoras</td>
<td>0,8</td>
<td>3 a 1</td>
<td>5 a 1</td>
<td>0,4 a 1</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo A</td>
<td>0,6</td>
<td>6 a 1</td>
<td>10 a 1</td>
<td>0,4 a 1</td>
</tr>
<tr>
<td>Vías secundarias residencial Tipo B</td>
<td>0,5</td>
<td>6 a 1</td>
<td>10 a 1</td>
<td>0,4 a 1</td>
</tr>
<tr>
<td>Vías secundarias industrial Tipo C</td>
<td>0,3</td>
<td>6 a 1</td>
<td>10 a 1</td>
<td>0,4 a 1</td>
</tr>
</tbody>
</table>
Apéndice C
NORMATIVO
Medición de iluminancia

C.1. Objetivo.

Este apéndice normativo tiene como objetivo establecer los requisitos técnicos mínimos que deben cumplir para realizar la medición de la iluminancia mínima promedio en las vialidades.

C.2. Instrumentos y equipos.

C.2.1. Detector fotométrico para medición de iluminancia con las siguientes características:

b) Coseno corregido;
c) Corrección de color, de acuerdo a la curva eficacia luminosa de la CIE,
d) Intervalo de medición de 0 a 100 luxes
e) La desviación de la responsividad espectral relativa del detector fotométrico (f_1'), no debe de exceder el 5 %.
f) Calibración con un nivel de confianza de 95% y un factor de cobertura k=2.

El equipo de medición debe tener la capacidad de colocarse en el punto de medición, sin que el observador pueda causar sombra, debe contar con un lector (display) mínimo de tres cifras significativas, con iluminación.

C.3. Condiciones generales de la prueba

El tramo de la vialidad para las mediciones debe ser recto e incluir al menos tres luminarios, los cuales deben permanecer encendidos, se debe buscar un tramo que no sea afectado por otras fuentes de luz u objetos que obstruyan la luz emitida por luminarios

Las mediciones se deben tomar al nivel de piso, de noche, bajo condiciones mínimas de iluminación natural.

Se debe tener extremo cuidado, que el personal involucrado en la medición, no interfiera obstruyendo la luz al equipo de medición, cause sombras o refleje la luz por el color de la ropa.

No deben tomarse mediciones cuando la vialidad este mojada, debido a la reflección especular de las superficie mojada.

C.4. Distribución de los luminarios en el tramo de prueba.

Los tramos bajo prueba pueden presentar una de las siguientes distribuciones de luminarios:
Figura C.1. **Distribución unilateral**

Figura C.2. **Distribución tres bolillo**
Figura C.3. Distribución bilateral opuesta

Figura C.4. Distribución central doble
En la Tabla D-1 se describen las características del coeficiente de luminancia media del pavimento para el cálculo de luminancia de una vialidad.

Tabla D-1.- Características de reflectancia del pavimento

<table>
<thead>
<tr>
<th>Clase</th>
<th>Coeficiente de luminancia media</th>
<th>Descripción</th>
<th>Tipo de reflectancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0,10</td>
<td>Superficie de concreto, cemento portland, superficie de asfalto difuso con un mínimo de 15% de agregados brillantes artificiales.</td>
<td>Casi difuso</td>
</tr>
<tr>
<td>R2</td>
<td>0,07</td>
<td>Superficie de asfalto con un agregado compuesto de un mínimo de 60% de grava de tamaño mayor que 10 mm. Superficie de asfalto con 10 a 15% de abrillantador artificial en la mezcla agregada.</td>
<td>Difuso especular</td>
</tr>
<tr>
<td>R3</td>
<td>0,07</td>
<td>Superficie de asfalto regular y con recubrimiento sellado, con agregados obscuros tal como roca o roca volcánica, textura rugosa después de algunos meses de uso (Típico de autopistas).</td>
<td>Ligeramente especular</td>
</tr>
<tr>
<td>R4</td>
<td>0,08</td>
<td>Superficie de asfalto con textura muy tersa.</td>
<td>Muy especular</td>
</tr>
</tbody>
</table>
Los luminarios con leds destinados al alumbrado de vialidades deben tener un valor de eficacia luminosa mínima de 70 lm/W.

6.1.2. Luminarios para alumbrado de áreas exteriores

Los luminarios con leds destinados al alumbrado de áreas exteriores, deben cumplir con el valor de eficacia luminosa indicada en la Tabla 1.

Tabla 1. Eficacia luminosa mínima y flujo luminoso total para luminarios de exteriores

<table>
<thead>
<tr>
<th>Luminario para instalarse en</th>
<th>Eficacia luminosa mínima [lm/W]</th>
<th>Porcentaje de flujo luminoso en la zona, respecto al flujo luminoso total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pared</td>
<td>52</td>
<td>No más de 48% hacia enfrente en la zona de 60 y 80° (FH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No más de 3% hacia enfrente en la zona de 80 y 90° (FVH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0% en la zona de 90 y 100° (UL) y en la zona arriba de 100° (UH)</td>
</tr>
<tr>
<td>Poste</td>
<td>70</td>
<td>Al menos el 30% hacia enfrente y hacia atrás en la zona de 60 y 80° (FH + BH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No más del 20% arriba de 80° (FVH + BVH + UL + UH)</td>
</tr>
</tbody>
</table>

6.2. Relación del flujo luminoso total nominal

El flujo luminoso total inicial medido de los luminarios con leds no debe ser menor al 90% del valor nominal marcado en el producto, en el empaque, en el instructivo y/o en la garantía.

6.3. Temperatura de color correlacionada

Los luminarios con leds deben cumplir con la Temperatura de Color Correlacionada (TCC), indicada en la Tabla 2.
Tabla 2. Temperatura de Color Correlacionada (TCC)

<table>
<thead>
<tr>
<th>TCC nominal [K]</th>
<th>Intervalo de tolerancia de TCC [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 700</td>
<td>2 580 a 2 870</td>
</tr>
<tr>
<td>3 000</td>
<td>2 870 a 3 220</td>
</tr>
<tr>
<td>3 500</td>
<td>3 220 a 3 710</td>
</tr>
<tr>
<td>4 000</td>
<td>3 710 a 4 260</td>
</tr>
<tr>
<td>4 500</td>
<td>4 260 a 4 746</td>
</tr>
<tr>
<td>5 000</td>
<td>4 745 a 5 311</td>
</tr>
<tr>
<td>5 700</td>
<td>5 310 a 6 020</td>
</tr>
<tr>
<td>6 500</td>
<td>6 020 a 7 040</td>
</tr>
</tbody>
</table>

6.4. Flujo luminoso mantenido

Los luminarios con leds para alumbrado de vialidades y los luminarios con leds para alumbrado de áreas exteriores, deben cumplir con el flujo luminoso total mínimo mantenido establecido en la Tabla 3, medidos después de un periodo de prueba de 6 000 horas y de acuerdo a la vida útil declarada por el fabricante o importador.

Tabla 3. Requisitos de mantenimiento del flujo luminoso total

<table>
<thead>
<tr>
<th>Vida nominal [h]</th>
<th>Flujo luminoso total mínimo mantenido a las 6 000 horas [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 35 000</td>
<td>93.1</td>
</tr>
<tr>
<td>35 000 y menor a 40 000</td>
<td>94.1</td>
</tr>
<tr>
<td>40 000 y menor a 45 000</td>
<td>94.8</td>
</tr>
<tr>
<td>45 000 y menor a 50 000</td>
<td>95.4</td>
</tr>
<tr>
<td>50 000 y menor a 100 000</td>
<td>95.8</td>
</tr>
<tr>
<td>100 000 y mayores</td>
<td>97.9</td>
</tr>
</tbody>
</table>

6.5. Indice de rendimiento de color

6.5.1. Luminarios para alumbrado de vialidades

Los luminarios con leds destinados al alumbrado de vialidades deben tener un valor de índice de rendimiento de color mínimo de 67.
6.5.2. Luminarios para alumbrado de áreas exteriores
Los luminarios con leds destinados al alumbrado de exteriores deben tener un valor de índice de rendimiento de color mínimo de 70.

6.6. Factor de potencia
Los luminarios con leds, deben tener un factor de potencia mínimo de 0.90.

6.7. Distorsión armónica total
La distorsión armónica total en corriente eléctrica, debe ser menor a 20%.

6.8. Flujo luminoso de deslumbramiento
6.8.1. Flujo luminoso de deslumbramiento máximo para luminarios con leds para vialidades
El flujo luminoso de deslumbramiento máximo respecto al ángulo vertical y su porcentaje respecto al flujo luminoso total, no deben ser mayores a los indicados en la Tabla 4 y de acuerdo a la Figura 1.

6.8.2. Flujo luminoso lado calle bajo (FL)
6.8.2.1. El flujo luminoso lado calle comprendido entre 0 y 30 grados (FL), debe ser menor que el flujo luminoso lado calle comprendido entre 30 y 60 grados (FM), ver Figura 1.

6.8.2.2. El flujo luminoso lado calle comprendido entre 0 y 30 grados (FL), debe ser menor que el flujo luminoso lado calle comprendido entre 60 y 80 grados (FH), ver Figura 1.
Tabla 4. Valores máximos de flujos luminosos de deslumbramiento

<table>
<thead>
<tr>
<th>Angulo respecto a la vertical (Figura 1)</th>
<th>Flujo luminoso de deslumbramiento máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En lúmenes [lm]</td>
</tr>
<tr>
<td>Entre 60 y 80° lado calle (FH)</td>
<td>12 000</td>
</tr>
<tr>
<td>Entre 60 y 80° lado casa (BH) [Asimétrico]</td>
<td>5 000</td>
</tr>
<tr>
<td>Entre 60 y 80° lado casa (BH) [Simétrico]</td>
<td>12 000</td>
</tr>
<tr>
<td>Entre 80 y 90° lado calle (FVH)</td>
<td>750</td>
</tr>
<tr>
<td>Entre 80 y 90° lado casa (BVH)</td>
<td>750</td>
</tr>
<tr>
<td>Entre 90 y 100° lado calle y lado casa (UL)</td>
<td>1 000</td>
</tr>
<tr>
<td>Entre 100 y 180° lado calle y lado casa (UH)</td>
<td>1 000</td>
</tr>
<tr>
<td>Entre 0 y 30° lado casa (BL)</td>
<td>5 000</td>
</tr>
<tr>
<td>Entre 30 y 60° lado casa (BM)</td>
<td>8 500</td>
</tr>
</tbody>
</table>
REGLAMENTO DE LA LEY FEDERAL SOBRE MONUMENTOS Y ZONAS ARQUEOLÓGICAS, ARTÍSTICOS E HISTÓRICOS

Nuevo Reglamento publicado en el Diario Oficial de la Federación el 8 de diciembre de 1975

TEXTO VIGENTE
Última reforma publicada DOF 05-01-1993

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Presidencia de la República.

LUIS ECHEVERRIA ALVAREZ, Presidente Constitucional de los Estados Unidos Mexicanos, en uso de la facultad que me confiere el artículo 89, fracción I, de la Constitución Política de los Estados Unidos Mexicanos, he tenido a bien expedir el siguiente

REGLAMENTO DE LA LEY FEDERAL SOBRE MONUMENTOS Y ZONAS ARQUEOLOGICAS, ARTISTICOS E HISTORICOS

CAPITULO I
Disposiciones Generales

ARTICULO 1.- El Instituto competente organizará o autorizará asociaciones civiles, juntas vecinales o uniones de campesinos, que tendrán por objeto:

I.- Auxiliar a las autoridades federales en el cuidado o preservación de zona o monumento determinado;

II.- Efectuar una labor educativa entre los miembros de la comunidad, sobre la importancia de la conservación y acrecentamiento del patrimonio cultural de la Nación;

III.- Proveer la visita del público a la correspondiente zona o monumento;

IV.- Hacer del conocimiento de las autoridades cualquier exploración, obra o actividad que no esté autorizada por el Instituto respectivo; y

V.- Realizar las actividades afines a las anteriores que autorice el Instituto competente.

ARTICULO 2.- Las asociaciones civiles, juntas vecinales o uniones de campesinos, para su funcionamiento deberán satisfacer los siguiente requisitos:

I.- Obtener autorización por escrito del Instituto competente;

II.- Presentar al Instituto competente copia autorizada del acta constitutiva en el caso de las asociaciones civiles;

III.- Levantar acta de constitución ante el Instituto competente, en el caso de las juntas vecinales o uniones de campesinos, las cuales contarán como mínimo con un número de diez miembros; y

IV.- Acreditar ante el Instituto competente que sus miembros gozan de buena reputación y que no han sido sentenciados por la comisión de delitos internacionales.

ARTICULO 3.- Las asociaciones civiles elegirán a sus órganos directivos de conformidad con sus estatutos; las juntas vecinales y las uniones de campesinos contaran con un presidente, un secretario, un tesorero y tres vocales, elegidos por voto mayoritario de sus miembros para un periodo de un año, pudiendo ser reelectos.
ARTICULO 4.- En las autorizaciones otorgadas por el Instituto competente, se describirá la zona o monumento y se establecerán las medidas aplicables para el cumplimiento del objeto a que se refiere el artículo I de este Reglamento.

ARTICULO 5.- El Instituto competente, previa audiencia que se conceda a los interesados para que rindan pruebas y aleguen lo que a sus derechos convenga, revocará las autorizaciones otorgadas a las asociaciones civiles, juntas vecinales o uniones de campesinos:

I.- Cuando por acuerdo mayoritario de su asamblea general se disponga su disolución; y

II.- Cuando no cumplan las disposiciones de la Ley, de este Reglamento o de las autorizaciones otorgadas.

ARTICULO 6.- Los institutos competentes podrán otorgar a las asociaciones civiles, juntas vecinales y uniones de campesinos, permisos con duración hasta de veinticinco años, prorrogables por una sola vez por igual término, para instalar estaciones de servicios para visitantes dentro de zonas o monumentos determinados. Al expirar el permiso respectivo las obras ejecutadas por los particulares en las zonas o monumentos pasarán a propiedad de la Nación.

ARTICULO 7.- El Instituto competente podrá autorizar a personas físicas o morales ya constituidas que reúnan, en lo conducente, los requisitos señalados en el artículo 2 de este Reglamento, como órganos auxiliares de las autoridades competentes para impedir el saqueo arqueológico y preservar el patrimonio cultural de la Nación.

ARTICULO 8.- Las asociaciones civiles, juntas vecinales y uniones de campesinos podrán crear o mantener museos regionales, para lo cual se aplicarán, en lo conducente, las disposiciones señaladas en los artículos anteriores y además:

I.- Solicitarán la asesoría técnica del Instituto competente, quien determinará los métodos que habrán de observarse en los sistemas de construcción, inventario, mantenimiento y recaudación de cuotas;

II.- Recabarán la autorización del Instituto competente para obtener y reunir fondos para operación, mantenimiento y adquisición, así como para organizar eventos culturales y toda clase de promociones inherentes al museo; y

III.- Enterarán, a petición del Instituto competente, el porcentaje que este les señale del importe de las cuotas que recauden.

ARTICULO 9.- Las declaratorias de monumentos artísticos e históricos pertenecientes a la Federación, Distrito Federal, Estados y Municipios, así como las declaratorias de zonas arqueológicas, artísticas e históricas serán expedidas o revocadas por el Presidente de la República. En los demás casos la expedición o revocación se hará por el Secretario de Educación Pública.

Las declaratorias de zonas arqueológicas, artísticas e históricas determinarán, específicamente, las características de éstas y, en su caso, las condiciones a que deberán sujetarse las construcciones que se hagan en dichas zonas.

Las declaratorias o revocaciones a que se refiere este artículo se publicarán en el “Diario Oficial” de la Federación. Cuando se trate de monumentos se notificarán personalmente a los interesados y, en caso de inmuebles también a los colindantes. Cuando se ignore su domicilio, surtirá efectos de notificación personal una segunda publicación de la declaratoria o revocación en el “Diario Oficial” de la Federación. Además, se dará aviso al Registro Público de la Propiedad de la localidad y al Registro Público de Monumentos y Zonas competente, para su inscripción.
ARTICULO 10.- El Instituto Nacional de Antropología e Historia podrá conceder el uso de los monumentos arqueológicos muebles a los organismos públicos descentralizados y a empresas de participación estatal, así como a las personas físicas o morales que los detenten.

ARTICULO 11.- La concesión de uso a que se refiere el artículo anterior sólo podrá ser otorgada por el Instituto Nacional de Antropología e Historia si se satisfacen los siguientes requisitos:

I.- Formular solicitud, utilizando la forma oficialmente aprobada, con los datos que en ella se exijan; y

II.- Presentar el monumento.

En caso de que se presume que la transportación del monumento puse en peligro su integridad, el Instituto Nacional de Antropología e Historia practicará inspección del bien en el lugar en que se encuentre, mediante el pago de los gastos que se occasionen, para cerciorarse de la existencia del mismo.

ARTICULO 12.- La concesión de uso será nominativa e intransferible, salvo por causa de muerte, y su duración será indefinida.

ARTICULO 13.- Los concesionarios de monumentos arqueológicos muebles deberá conservarlos y, en su caso, proceder a su restauración previo permiso y bajo la dirección del Instituto Nacional de Antropología e Historia.

La concesión será revocada por el Instituto Nacional de Antropología e Historia, cuando no se cumpla lo dispuesto en el párrafo anterior, previa audiencia que se concede a los interesados para que rindan pruebas y aleguen lo que a sus derechos convenga.

ARTICULO 14.- La competencia de los Poderes Federales, dentro de las zonas de monumentos, se limitará a la protección, conservación, restauración y recuperación de éstas.

ARTICULO 15.- Los inspectores encargados de vigilar el cumplimiento de la Ley y de este Reglamento, practicarán sus visitas de acuerdo con las atribuciones de la dependencia a la cual representan y conforme a las instrucciones recibidas por la autoridad que disponga la inspección sujetándose a las siguientes normas:

I.- Se acreditarán debidamente ante el particular como inspectores de la dependencia respectiva;

II.- Durante la inspección podrán solicitar del particular la información que se requerirá;

III.- En caso de que se trate de comerciantes dedicados a la compraventa de bienes declarados monumentos artísticos o históricos, el inspector deberá comprobar que las operaciones realizadas se efectuaron de conformidad con lo dispuesto en la Ley y en este Reglamento.

IV.- Formularán acta detallada de la visita de inspección que realicen, en la que se harán constar, si las hubiere, las irregularidades que se encuentren y los datos necesarios para clasificar la infracción que de ellas se derive. Las actas deberán ser firmadas por el inspector o inspectores que realicen la visita y por quienes en ellas intervinieron; si los interesados se negaren a firmar se hará constar esta circunstancia en el acta; y

V.- Las actas se remitirán, en un plazo no mayor de setenta y dos horas, al Instituto competente para que, en su caso, inicie el procedimiento a que se refiere el artículo 48 de este Reglamento.

ARTICULO 16.- Las autoridades civiles y militares auxiliarán a los inspectores en sus funciones cuando éstos lo soliciten.

CAPITULO II
Del Registro

ARTICULO 17.- En las inscripciones que de monumentos muebles o declaratorias respectivas se hagan en los registros públicos de los Institutos competentes, se anotarán:

I.- La naturaleza del monumento y, en su caso, el nombre con que se le conozca;

II.- La descripción del mueble y el lugar donde se encuentre;

III.- El nombre y domicilio del propietario o, en caso, de quien lo detente;

IV.- Los actos traslativos de dominio, cuando éstos sean procedentes de acuerdo con la Ley; y

V.- El cambio de destino del monumento, cuando se trate de propiedad federal.

ARTICULO 18.- En las inscripciones que de monumentos inmuebles o declaratorias respectivas se hagan en los Registros Público de las Institutos competentes, se anotarán:

I.- La procedencia del momento;

II.- La naturaleza del inmueble y, en su caso, nombre con que se conozca;

II.- La superficie, ubicación, líndero y descripción del monumento;

IV.- El nombre y domicilio del propietario o poseedor;

V.- Los actos traslativos de dominio, cuando éstos sean procedentes conforme a la Ley; y

VI.- El cambio de destino del inmueble, cuando se trate de propiedad federal.

ARTICULO 19.- En las inscripciones, que de las declaratorias de zonas se hagan en los Registros Públicos de los Institutos competentes, se anotarán:

I.- La ubicación y linderos de la zona;

II.- El área de la zona; y

III.- La relación de los monumentos y, en su caso, el nombre con que se les conozca.

ARTICULO 20.- En las inscripciones que de los comerciantes en monumentos y en bienes artísticos o históricos se hagan en los Registros Públicos de los Institutos competentes, se anotarán:

I.- El nombre, denominación o razón social;

II.- El domicilio;

III.- La cédula de causante;

IV.- El tipo de bienes que constituyen el objeto de sus operaciones;

V.- Los avisos a que se refiere el artículo 26 de la Ley;

VI.- Las plazas en las que opere;

VII.- El cambio de denominación o razón social; y
VII.- El traspaso, clausura o baja.

ARTICULO 21.- Para obtener el registro de monumentos, a petición de parte interesada, deberán satisfacerse los siguientes requisitos:

I.- Formular solicitud, utilizando la forma oficialmente aprobada, con los datos que en ella se exijan;

II.- Presentar, en su caso, la declaratoria de monumento;

III.- Exhibir, en su caso, los documentos que acrediten la propiedad o posesión del monumento;

IV.- Entregar plano de localización plantas arquitectónicas, cortes y fachadas, en caso de inmueble; y

V.- Presentar fotografías, de ser necesario, para la mejor identificación del bien de que se trate.

ARTICULO 22.- Para obtener su registro, los comerciantes presentarán solicitud, dentro de los diez días siguientes a la fecha de iniciación de sus operaciones, utilizando las formas oficialmente aprobadas. A dicha solicitud deberán acompañar inventario de los monumentos artísticos o históricos que posean.

Asimismo, en un plazo igual, los comerciantes darán aviso al Registro del instituto competente de cualquier cambio de su especialidad.

ARTICULO 23.- Cada Registro Público de Monumentos y Zonas se compondrá en cuatro secciones en las que se inscribirán:

I.- Los monumentos y declaratorias de muebles;

II.- Los monumentos y declaratorias de inmuebles;

III.- Las declaratorias de zonas; y

IV.- Los comerciantes.

ARTICULO 24.- Las inscripciones deberán numerarse progresivamente y cuando existan diversas inscripciones que se refieran a un mismo monumento se numerarán correlativamente.

ARTICULO 25.- Hecha la inscripción y previo el pago de los derechos correspondientes, se expedirá al interesado constancia del registro, la cual no acreditará la autenticidad del bien registrado.

ARTICULO 26.- Las inscripciones se cancelarán por las causas siguientes:

I.- Revocación de declaratoria;

II.- Resolución de autoridad competente;

III.- Clausura o baja, en caso de comerciante; y

IV.- Las demás que establezcan las leyes o reglamentos.

ARTICULO 27.- En ningún caso se tacharán las inscripciones en los Registros. Toda rectificación requerirá un nuevo asiento, en el que se expresará y se rectificará claramente el error cometido.

ARTICULO 28.- En cada Registro Público de los Institutos competentes se llevará un catálogo de los monumentos y zonas, que comprenderá la documentación que se haya requerido para realizar la inscripción correspondiente y deberá mantenerse actualizado.
ARTÍCULO 29.- Para obtener la certificación de autenticidad de un monumento, el interesado presentará solicitud en el Instituto competente, la cual deberá contener:

I.- Los datos generales del interesado;

II.- La naturaleza del bien presentado; y

III.- La descripción de las características del bien.

A la solicitud se le dará trámite previo pago de los derechos correspondientes.

ARTÍCULO 30.- El Instituto correspondiente turnará la solicitud a sus técnicos, quienes deberán emitir dictamen en un plazo no mayor de treinta días hábiles.

ARTÍCULO 31.- Con vista de la solicitud y del dictamen emitido, el Instituto competente pronunciará la resolución que proceda, dentro de un término de treinta días hábiles.

CAPITULO III
De los Monumentos y Zonas Arqueológicos, Artísticos e Históricos

ARTÍCULO 32.- Queda prohibida la exportación definitiva de los bienes artísticos de propiedad particular que de oficio hayan sido declarado monumentos.

ARTÍCULO 33.- Queda prohibida la exportación definitiva de los siguientes monumentos históricos de propiedad particular:

I.- Los señalados en las fracción I, II y III del artículo 36 de la Ley;

II.- Los que no sean sustituibles; y

III.- Aquellos cuya integridad pueda ser afectada por su transportación o por variarse las condiciones en que se encuentren.

ARTÍCULO 34.- Queda prohibida la exportación temporal de los monumentos artísticos o históricos de propiedad particular cuya integridad pueda ser afectada por su transportación o por variarse las condiciones en que se encuentren.

ARTÍCULO 35.- Para tramitar permiso de exportación temporal o definitiva de un monumento artístico o histórico de propiedad particular, el interesado deberá satisfacer los requisitos que exijan en la forma oficial de solicitud que proporcionará el Instituto competente.

ARTÍCULO 36.- En caso de exportación temporal de los monumentos artísticos o históricos a que se refieren los artículos 32 y 33 de este Reglamento, deberá otorgarse por el interesado fianza a favor y a satisfacción del Instituto competente, que garantice el retorno y conservación del monumento.

ARTÍCULO 37.- El plazo de la exportación temporal de monumentos artísticos o históricos, será determinado por el Instituto competente tomando en consideración la finalidad de la misma.

ARTÍCULO 37 bis.- Queda prohibida la exportación definitiva de monumentos arqueológicos, salvo canjes o donativos a gobiernos o institutos científicos extranjeros, por acuerdo expreso del Presidente de la República.

La exportación temporal de monumentos arqueológicos sólo podrá llevarse a cabo para su exhibición en el extranjero, siempre y cuando la integridad de éstos no pueda ser afectada por su transportación, y de conformidad con lo siguiente:
I.- Se requerirá permiso previo del titular de la Secretaría de Educación Pública quien, para otorgarlo, tomará en consideración la opinión de la Secretaría de Relaciones Exteriores y del Instituto Nacional de Antropología e Historia;

II.- La Secretaría de Relaciones Exteriores adoptará las medidas necesarias para que los monumentos arqueológicos sean trasladados e instalados en los lugares de las exhibiciones y, al concluir éstas, se retornen a nuestro país, así como aquéllas para su debida protección, y

III.- El Instituto Nacional de Antropología e Historia realizará el embalaje de los monumentos para su transportación, así como el avalúo de los mismos para efectos de los seguros que se contraten, los que deberán cubrir todo tipo de riesgos.

ARTICULO 38.- Para los efectos de la Ley y de este Reglamento, se entiende por reproducción de monumentos arqueológicos, artísticos o históricos con fin comercial, la réplica obtenida por cualquier procedimiento o medio, en dimensiones semejantes al original o en diferente escala.

ARTICULO 39.- El permiso para la reproducción de monumentos podrá ser otorgado por el Instituto competente cuando el interesado demuestre fehacientemente que cuenta con la autorización del propietario, poseedor o concesionario para que se haga la reproducción y que ha cumplido con lo dispuesto por la Ley Federal de Derechos de Autor.

Asimismo, el interesado manifestará el fin comercial que pretenda dar a la reproducción, el cual no deberá menoscabar su calidad de monumento.

ARTICULO 40.- El permiso señalará el fin comercial aprobado que se dará a la reproducción. El fin comercial sólo podrá variarse mediante autorización del Instituto competente.

ARTICULO 41.- Las reproducciones de monumentos deberán llevar inscrita de manera indeleble la siguiente leyenda: "Reproducción autorizada por el Instituto competente".

ARTICULO 42.- Toda obra en zona o monumento, inclusive la colocación de anuncios, avisos, carteles, templeteles, instalaciones diversas o cualesquiera otras, únicamente podrá realizarse previa autorización otorgada por el Instituto correspondiente, para lo cual el interesado habrá de presentar una solicitud con los siguientes requisitos:

I.- Nombre y domicilio del solicitante:

II.- Nombre y domicilio del responsable de la obra;

III.- Nombre y domicilio del propietario;

IV.- Características, planos y especificaciones de la obra a realizarse;

V.- Planos, descripción y fotografías del estado actual del monumento y, en el caso de ser inmueble, sus colindancias;

VI.- Su aceptación para la realización de inspecciones por parte del Instituto competente; y

VII.- A juicio del Instituto competente, deberá otorgar fianza que garantice a satisfacción el pago por los daños que pudiera sufrir el monumento.

Los requisitos señalados en este artículo serán aplicables, en lo conducente, a las solicitudes de construcción y acondicionamiento de edificios para exhibición museográfica a que se refiere el artículo 7o. de la Ley.

Adición 05-01-1993
ARTICULO 43.- El Instituto competente otorgará o denegará la autorización a que se refiere el artículo anterior en un plazo no mayor de treinta días hábiles, a partir de la fecha de recepción de la solicitud; en el caso de otorgarse, se le notificará al interesado para que previamente pague los derechos correspondientes.

ARTICULO 44.- Cualquier obra que se realice en predios colindantes a un monumento arqueológico, artístico o históricos, deberá contar previamente con el permiso del Instituto competente y para tal efecto:

I.- El solicitante deberá cumplir con los requisitos establecidos en el artículo 42 de este Reglamento;

II.- A la solicitud se acompañará dictamen de perito autorizado por el Instituto competente en el que se indicarán las obras que deberán realizarse para mantener la estabilidad y las características del monumento. Dichas obras serán costeadas en su totalidad por el propietario del predio colindante; y

III.- El Instituto competente otorgará o denegará el permiso en un plazo no mayor de treinta días hábiles, a partir de la fecha de recepción de la solicitud.

ARTICULO 45.- En el dictamen técnico a que se refiere el artículo 11 de la Ley deberá constar:

I.- Que el uso del inmueble es el congruente con sus antecedentes y sus características de monumento artístico o histórico.

II.- Que los elementos arquitectónicos se encuentran en buen estado de conservación; y

III.- Que el funcionamiento de Instalaciones y servicios no altera ni deforma los valores del monumento.

El dictamen se emitirá, en su caso, previo el pago de los derechos correspondientes.

ARTICULO 46.- Toda obra que se realice en monumentos arqueológicos, artísticos o históricos contraviniendo las disposiciones de la Ley o de este Reglamento será suspendida por el Instituto competente mediante la imposición de sellos oficiales que impidan su continuación.

A quien viole los sellos impuestos, se le aplicará la sanción prevista en el artículo 55 de la Ley.

ARTICULO 47.- El Instituto competente promoverá ante las autoridades correspondientes la revocación de la exención del pago del impuesto predial concedida al propietario de un monumento, cuando el inmueble deje de satisfacer alguno de los requisitos que sirvieron de base al dictamen emitido.

CAPITULO IV
De las Sanciones

ARTICULO 48.- Para la imposición de una multa, el Instituto competente citará al presunto infractor a una audiencia. En el citatorio se le hará saber la infracción que se le impute y el lugar, día y hora en que se celebrará la audiencia, en la que el particular podrá ofrecer pruebas y alegar lo que a su derecho convenga. El Instituto competente dictará la resolución que proceda.

ARTICULO 49.- El recurso de reconsideración podrá ser interpuesto por la persona a quien le fue impuesta la multa, dentro del término de cinco días hábiles contados a partir de la fecha en que se le notificó la sanción.

ARTICULO 50.- El recurso se interpondrá ante el Secretario de Educación Público por conducto del Instituto que impuso la sanción, por medio de escrito en el que el recurrente expresará los motivos por los cuales estima que debe reconsiderarse la multa.

ARTICULO 51.- En el escrito a que se refiere el artículo anterior, el interesado podrá ofrecer las pruebas que estime pertinentes. De ser necesario, el Secretario de Educación Pública citará a una audiencia
dentro de los quince días siguientes a la interposición del recurso, en la que se desahogarán las pruebas ofrecidas y dictará la resolución que proceda.

ARTICULO 52.- La interposición del recurso suspenderá la ejecución de la multa, siempre que se haya garantizado su importe ante las autoridades hacendarias correspondientes, en los términos del Código Fiscal de la Federación.

ARTICULOS TRANSITORIOS

PRIMERO.- Este Reglamento entrará en vigor a los treinta días de su publicación en el "Diario Oficial" de la Federación.

SEGUNDO.- Se concede un plazo de sesenta días para que, mediante el cumplimiento de los requisitos establecidos en este Reglamento, los comerciantes en monumentos y en bienes artísticos o históricos, procedan a registrarse en el Instituto competente.

Dicho plazo se contará a partir de la fecha en que entre en vigor este Reglamento.

TERCERO.- Los Institutos competentes adoptarán las medidas necesarias para que el servicio a que se refiere el artículo anterior, se preste dentro del término que el mismo establece.

CUARTO.- Se abroga el Reglamento de la Ley sobre protección y conservación de monumentos arqueológicos e históricos, poblaciones típicas y lugares de belleza natural, expedido el 3 de abril de 1934 y publicado en el "Diario Oficial" de la Federación el día 7 del mismo mes y año, y se derogan las demás disposiciones que se opongan al presente Reglamento.

Dado en la residencia del Poder Ejecutivo Federal, en la Ciudad de México, a los veinte días del mes de septiembre de mil novecientos setenta y cinco.- **Luis Echeverría Álvarez.**- Rúbrica.- El Secretario de Educación Pública, **Víctor Bravo Ahuja.**- Rúbrica.- El Secretario del Patrimonio Nacional, **Francisco Javier Alejo.**- Rúbrica.- El Secretario de Gobernación, **Mario Moya Palencia.**- Rúbrica.- El Secretario de Hacienda y Crédito Público, **José López Portillo.**- Rúbrica.- El Secretario de Relaciones Exteriores, **Emilio O. Rabasa.**- Rúbrica.- El Jefe del Departamento del Distrito Federal, **Octavio Senties Gómez.**- Rúbrica.
ARTÍCULOS TRANSITORIOS DE DECRETOS DE REFORMA

DECRETO por el que se adiciona el Reglamento de la Ley Federal sobre Monumentos y Zonas Arqueológicos, Artísticos e Históricos.

Publicado en el Diario Oficial de la Federación el 5 de enero de 1993

ARTÍCULO UNICO.- Se adiciona el artículo 37 bis al Reglamento de la Ley Federal sobre Monumentos y Zonas Arqueológicos, Artísticos e Históricos, para quedar como sigue:

.........

TRANSITORIO

UNICO.- El presente Decreto entrará en vigor al día siguiente de su publicación en el Diario Oficial de la Federación.

ANEXO B

DESCRIPCIÓN DEL SISTEMA
All product performance data is dependent upon installation location.

2015-06-22
SOLAR ENGINE

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine EPA</td>
<td>0.819 m² (8.82 ft²)</td>
</tr>
<tr>
<td>Engine APA</td>
<td>0.63 m² (6.78 ft²)</td>
</tr>
<tr>
<td>Weight (without Batteries)</td>
<td>39.0 kg (85.0 lb)</td>
</tr>
<tr>
<td>Weight (with Batteries)</td>
<td>97.8 kg (215.5 lb)</td>
</tr>
<tr>
<td>Panel Length</td>
<td>1640 mm (64.6 in)</td>
</tr>
<tr>
<td>Panel Width</td>
<td>992 mm (39.1 in)</td>
</tr>
<tr>
<td>Panel Watts</td>
<td>245W</td>
</tr>
<tr>
<td>Tilt Angle</td>
<td>20 degrees</td>
</tr>
<tr>
<td>Vandalism Protection</td>
<td>Top-of-pole mounted</td>
</tr>
<tr>
<td>Enclosure</td>
<td>UV-treated industrial acrylonitrile butadiene styrene</td>
</tr>
<tr>
<td>Electronics</td>
<td>Sealed to IP68</td>
</tr>
<tr>
<td>Solar Panels</td>
<td>High efficiency, performance matched to the energy management system for solar lighting applications.</td>
</tr>
<tr>
<td>Chassis Fastener</td>
<td>Hot-dip galvanized steel and stainless steel</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-25°C to +55°C (-13°F to 131°F)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-25°C to +60°C (-13°F to 140°F)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Manufactured in the USA in a facility registered to ISO 9001:2000 quality management system standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOUNTING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Mounting</td>
<td>Top of pole, round tenon, 15.2 cm (6.0 in) in length, 8.9 cm (3.5 in) outer diameter</td>
</tr>
<tr>
<td>Panel Direction</td>
<td>For Northern hemisphere panel faces due south. For Southern hemisphere panel faces due north.</td>
</tr>
<tr>
<td>Installation Time</td>
<td>60 minutes or less</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BATTERIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Type</td>
<td>AGM G27</td>
</tr>
<tr>
<td>Battery Quantity</td>
<td>2</td>
</tr>
<tr>
<td>Battery Capacity</td>
<td>198Ah (12V, at approximately 48 hr)</td>
</tr>
<tr>
<td>Depth of Discharge (Average)</td>
<td>25%</td>
</tr>
<tr>
<td>Cycles</td>
<td>2200</td>
</tr>
<tr>
<td>Rating</td>
<td>5+ years</td>
</tr>
</tbody>
</table>

* Effective Projected Area (EPA) calculated as the Actual Projected Area (APA) multiplied by a drag coefficient of 1.3. EPA of engine only: does not include fixture EPA.
** 3 second gust as per AASHTO 2001
***Rating based on an annual average temperature of 20°C (68°F)
EG-SERIES
SOLAR POWERED LED LIGHTING SYSTEM

OPERATION

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>19.69N</td>
</tr>
<tr>
<td>Insolation (Min Month Avg)</td>
<td>4.9 kWh/m²*day</td>
</tr>
<tr>
<td>Temperature (Average)</td>
<td>20.4 °C (68.72 °F)</td>
</tr>
<tr>
<td>Longest Night</td>
<td>13.1 hr</td>
</tr>
<tr>
<td>Array To Load Ratio</td>
<td>1.78</td>
</tr>
<tr>
<td>Autonomy</td>
<td>3.4 days</td>
</tr>
<tr>
<td>Operating Profile</td>
<td>Dusk to Dawn</td>
</tr>
<tr>
<td>Transitioning</td>
<td>Via solar panels</td>
</tr>
<tr>
<td>Status Indicators</td>
<td>Battery connection, low/high voltage disconnect, dimming.</td>
</tr>
</tbody>
</table>

FIXTURE

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumens</td>
<td>4718 Lumens</td>
</tr>
<tr>
<td>Fixture Type</td>
<td>XSP2</td>
</tr>
<tr>
<td>Fixture Manufacturer</td>
<td>Cree Inc.</td>
</tr>
<tr>
<td>LEDs Per Fixture</td>
<td>10 MDA LEDs</td>
</tr>
<tr>
<td>Fixtures Per System</td>
<td>One Fixture</td>
</tr>
<tr>
<td>Fixture Efficacy (Minimum)</td>
<td>112.3 lm/W</td>
</tr>
<tr>
<td>Fixture Wattage</td>
<td>42 W</td>
</tr>
<tr>
<td>Light Color Temperature</td>
<td>5700K Cool White</td>
</tr>
<tr>
<td>Rendering Index (CRI)</td>
<td>Minimum 70</td>
</tr>
<tr>
<td>Rated Life 70</td>
<td>50,000 @ 25°C (77°F)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-30°C to +40°C (-22°F to 104°F)</td>
</tr>
<tr>
<td>Housing</td>
<td>Die-cast aluminum construction</td>
</tr>
<tr>
<td>Finish</td>
<td>Colorfast DeltaGuard(R) Silver (RAL7035)</td>
</tr>
<tr>
<td>Fixture Dimensions</td>
<td>665 mm x 368 mm x 117 mm (26.2 in x 14.5 in x 4.6 in)</td>
</tr>
<tr>
<td>EPA</td>
<td>0.064 m² (0.69 ft²)</td>
</tr>
<tr>
<td>Fixture Weight</td>
<td>12 kg (26.5 lbs)</td>
</tr>
<tr>
<td>Mounting Details</td>
<td>Mounts on 42mm (1.6in) OD or 60mm (2.375in) OD horizontal tenon, minimum 203mm (8.0in) in length</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Manufactured in the USA in a facility registered to ISO 9001:2000 quality management system standards</td>
</tr>
<tr>
<td>Mounting Height Arm Length</td>
<td>For fixture mounting height and arm length, please refer to your project’s lighting layout. Fixture arms are quoted separately.</td>
</tr>
</tbody>
</table>

LIGHT DISTRIBUTION

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Distribution</td>
<td>Type 3 Med</td>
</tr>
<tr>
<td>Photometry</td>
<td>All published photometric testing performed to IESNA LM-79-08 standards by a NVLAP certified laboratory.</td>
</tr>
<tr>
<td>Other</td>
<td>International Dark-Sky Association (IDA) approved</td>
</tr>
</tbody>
</table>

Sol Inc. • Toll Free 1-800.959.1329 • Worldwide 1-250.380.0052 • Fax: 1-250.380.0062 • Email: info@solarlighting.com
POLE SPECIFICATIONS

<table>
<thead>
<tr>
<th>NOTE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Type</td>
<td>EG320</td>
</tr>
<tr>
<td>Weight (with Batteries)</td>
<td>97.8 kg (215.5 lb)</td>
</tr>
<tr>
<td>Engine EPA</td>
<td>0.819 m² (8.82 ft²)</td>
</tr>
<tr>
<td>Engine APA</td>
<td>0.63 m² (6.78 ft²)</td>
</tr>
<tr>
<td>Engine Mounting</td>
<td>Top of pole, round tenon, 15.2 cm (6.0 in) in length, 8.9 cm (3.5 in) outer diameter</td>
</tr>
</tbody>
</table>

Tenon Interface Diagram

Engine Interface Diagram

MAST ARM SPECIFICATIONS

<table>
<thead>
<tr>
<th>NOTE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture Type</td>
<td>XSP2</td>
</tr>
<tr>
<td>Fixtures Per System</td>
<td>One Fixture</td>
</tr>
<tr>
<td>Fixture Weight</td>
<td>12 kg (26.5 lbs)</td>
</tr>
<tr>
<td>EPA</td>
<td>0.064 m² (0.69 ft²)</td>
</tr>
<tr>
<td>Mounting Details</td>
<td>Mounts on 42mm (1.6in) OD or 60mm (2.375in) OD horizontal tenon, minimum 203mm (8.0in) in length</td>
</tr>
<tr>
<td>Fixture Mounting Height and Arm Length</td>
<td>For fixture mounting height and arm length, please refer to your project’s lighting layout. Fixture arms are quoted separately.</td>
</tr>
</tbody>
</table>
SYSTEM SIZING

The Carmanah selector tool ensures that the correct EG-series system is chosen for the application specified by the user. Employing over 25 years of NASA data, including temperature, solar insolation and average cloud cover values for the location in which the solar engine will be deployed, the Carmanah selector tool provides a guarantee of EG-series performance over the product’s lifespan.

SOLAR PANELS

Selected for high module conversion efficiency, positive tolerance, extended wind and snow load testing, weak light performance, self-cleaning and anti-reflective capabilities, the solar panels utilized by the Sol and Carmanah systems are provided by world-leading manufacturers of crystalline silicon modules that adhere to the highest international standards.

SOLAR ENGINE

The EG-series solar engine is engineered to withstand extreme environmental conditions, including heat, wind, corrosion, rain, hail, dust and sand. A pivoting solar panel aids maintenance and installation, while a sturdy metal chassis and secure enclosure protects systems within hurricane and coastal zones. Galvanized finishing and industrial plastics are also employed to further aid system durability.

BATTERIES

Absorbed glass mat (AGM) batteries are tested to withstand years of deep cycle use within high and low temperatures and are field-proven to perform with the EG-series systems. Recognized under UL 1989, EG320 batteries (Group 27) are designed specifically for solar power applications and are completely recyclable. Upgradeable battery boost options exist under Accessories. When in storage, batteries must be recharged every two months. See the Accessories section for Extended Storage Battery Charger products.

ENERGY MANAGEMENT SYSTEM

The Energy Management System (EMS) is the conduit to the efficient collection, storage and usage of energy collected by the solar panels. The Carmanah EMS is over 95% efficient, providing an optimum transfer of energy and is responsible for the opportunity to employ operating profiles.

CERTIFICATIONS

SOLAR ENGINE

PANELS

UL 1703, IEC 61215, IEC 61730, conformity to CE.

FIXTURE

OPERATING PROFILES

The Energy Management System (EMS or EternO4) controls LED drivers which control LED fixtures based on the operating profile. Controlled by customer’s specifications, the operating profile is configured at the factory and is designed to maximize lumen output when it is required and reduce lumen output as activity lessens in an effort to conserve energy. The EMS and EternO4 offer two types of operating profiles: all-night (dusk to dawn) and profiles adapted for usage during peak hours (for example: 7-dim-2, which means that the light is on for seven hours at 100%, dimmed for a period of time, then returning to 100% for two hours).

FIXTURE

The fixtures selected by the Carmanah on-line selector tool are specifically configured for the solar LED lighting systems' operation to guarantee light output, performance and system reliability as specified by the customer. Fixture housing is die-cast aluminum housing with a UV stabilized polymeric door and wet-rated LED optical modules which are tested to IESNA LM-79-2008 and LM-80-2008 standards. Fixtures are IDA Approved, Dark Sky Friendly and RoHS compliant, and tested to CALTrans 611 Vibration Testing. Fixtures are UL listed in international standards. Dark Sky Friendly. IDA Approved. RoHS Compliant. IP66 Light Engine. DLC qualified.

WARRANTY

The EG320 solar LED lighting systems is covered under a full system-wide three-year limited warranty, with batteries pro-rated.

ACCESSORIES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NO.</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Spares Kit</td>
<td>65971</td>
<td>Spare hardware for the assembly of the engine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommended one per ten systems.</td>
</tr>
<tr>
<td>Extended Storage Battery Charger</td>
<td>GPSC-10-12</td>
<td>Charging system for batteries in long-term storage (2 months)</td>
</tr>
<tr>
<td>Install Kit</td>
<td>65937</td>
<td>Includes lifting strap and u-bolts for ease of installation. Recommended two per project.</td>
</tr>
<tr>
<td>Infrared (IR) Controller</td>
<td>65926</td>
<td>Recommend two per project.</td>
</tr>
</tbody>
</table>

Sol Inc. • Toll Free 1.800.959.1329 • Worldwide 1.250.380.0052 • Fax: 1.250.380.0062 • Email: info@solarlighting.com
<table>
<thead>
<tr>
<th>Ref</th>
<th>Part</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65901</td>
<td>4</td>
<td>Round Head Bolt, 1/4"-20x0.75"</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
<td>Solar Panel</td>
</tr>
<tr>
<td>3</td>
<td>63979</td>
<td>1</td>
<td>Harness, Battery</td>
</tr>
<tr>
<td>4</td>
<td>63318</td>
<td>4</td>
<td>Nut, 5/16"-18, Stainless Steel</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>2</td>
<td>Battery</td>
</tr>
<tr>
<td>6</td>
<td>65364</td>
<td>2</td>
<td>Battery Anti-Skid Pad</td>
</tr>
<tr>
<td>7</td>
<td>63415</td>
<td>1</td>
<td>Battery Bucket</td>
</tr>
<tr>
<td>8</td>
<td>59714</td>
<td>1</td>
<td>Grounding Washer</td>
</tr>
<tr>
<td>9</td>
<td>65974</td>
<td>4</td>
<td>Washer, 0.281"ID, 0625"OD</td>
</tr>
<tr>
<td>10</td>
<td>63958</td>
<td>4</td>
<td>Nut, 1/4"-20</td>
</tr>
<tr>
<td>11</td>
<td>67205</td>
<td>2</td>
<td>Solar Panel Bracket</td>
</tr>
<tr>
<td>12</td>
<td>64446</td>
<td>4</td>
<td>Hex Bolt, 1/2"-13x1"</td>
</tr>
<tr>
<td>13</td>
<td>63956</td>
<td>6</td>
<td>Washer, 0.562"IDx1.375"OD</td>
</tr>
<tr>
<td>14</td>
<td>63578</td>
<td>4</td>
<td>Cage Nut, 1/2"-13</td>
</tr>
<tr>
<td>15</td>
<td>65936</td>
<td>2</td>
<td>Carriage Bolt, 1/4"x20x7"</td>
</tr>
<tr>
<td>16</td>
<td>63955</td>
<td>2</td>
<td>Washer, 0.312"IDx0.734"OD</td>
</tr>
<tr>
<td>17</td>
<td>63958</td>
<td>2</td>
<td>Hex Nut, 1/4"-20</td>
</tr>
<tr>
<td>18</td>
<td>63961</td>
<td>2</td>
<td>Carriage Bolt, 1/2"-13x7"</td>
</tr>
<tr>
<td>19</td>
<td>63957</td>
<td>2</td>
<td>Hex Nut, 1/2"-13</td>
</tr>
<tr>
<td>20</td>
<td>65958</td>
<td>1</td>
<td>Grounding Block</td>
</tr>
<tr>
<td>21</td>
<td>62335</td>
<td>2</td>
<td>Self-threading Screw, 10-24x5/8</td>
</tr>
<tr>
<td>22</td>
<td>63979</td>
<td>2</td>
<td>Battery Strap</td>
</tr>
<tr>
<td>23</td>
<td>63638</td>
<td>1</td>
<td>Metal Chassis</td>
</tr>
<tr>
<td>24</td>
<td>63620</td>
<td>2</td>
<td>Self-threading Screw, 8-32x3.75"</td>
</tr>
<tr>
<td>25</td>
<td>63967</td>
<td>1</td>
<td>EMS with Harness</td>
</tr>
<tr>
<td>26</td>
<td>63964</td>
<td>2</td>
<td>Fuse, 10A, 3A Fast Acting</td>
</tr>
<tr>
<td>27</td>
<td>63963</td>
<td>2</td>
<td>Wire Nut, Silicone Filled</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>1</td>
<td>Current Setting Resistor</td>
</tr>
<tr>
<td>29</td>
<td>65947</td>
<td>1</td>
<td>Fixture Wire, 3 Conductor</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>1</td>
<td>Light Fixture</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>1</td>
<td>Controller</td>
</tr>
<tr>
<td>-</td>
<td>65900</td>
<td>4</td>
<td>Zip Tie (not shown)</td>
</tr>
</tbody>
</table>
Required Tools

- **Flat Head Screw Driver**
- **Phillips Screw Driver**
- **7/16” Wrench or Socket**
- **1/2” Wrench or Socket**
- **3/4” Wrench or Socket**
- **Torque Wrench Recommended**
- **Battery Terminal Grease**

Installation Guide

Required Tools

- **Flat Head screw Driver**
- **Phillips screw Driver**
- **7/16” Wrench or Socket**
- **1/2” Wrench or Socket**
- **3/4” Wrench or Socket**
- **Torque Wrench Recommended**
- **Battery Terminal Grease**

Optional Installation Kit - 65937

- **x 4 Zip Tie (not shown)**
- **x 4**

Ref Part Qty Description

<table>
<thead>
<tr>
<th>Ref</th>
<th>Part</th>
<th>Qty</th>
<th>Description</th>
<th>Included in Kit 65904</th>
<th>Included in Kit 65898</th>
<th>Included in Part 63967</th>
<th>Custom Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65901</td>
<td>4</td>
<td>Round Head Bolt, 1/4"-20x0.75"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>Solar Panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>63979</td>
<td>1</td>
<td>Harness, Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>63318</td>
<td>4</td>
<td>Nut, 5/16”-18, Stainless Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>65364</td>
<td>2</td>
<td>Battery Anti-Skid Pad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>63415</td>
<td>1</td>
<td>Battery Bucket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>59714</td>
<td>1</td>
<td>Grounding Washer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>65974</td>
<td>4</td>
<td>Washer, 0.281”ID, 0625”OD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>63958</td>
<td>4</td>
<td>Nut, 1/4”-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>67205</td>
<td>2</td>
<td>Solar Panel Bracket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>64446</td>
<td>4</td>
<td>Hex Bolt, 1/2”-13x1”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>63956</td>
<td>6</td>
<td>Washer, 0.562”IDx1.375”OD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>63578</td>
<td>4</td>
<td>Cage Nut, 1/2”-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>65936</td>
<td>2</td>
<td>Carriage Bolt, 1/4”x20x7”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>63955</td>
<td>2</td>
<td>Washer, 0.312”IDx0.734”OD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>63958</td>
<td>2</td>
<td>Hex Nut, 1/4”-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>63961</td>
<td>2</td>
<td>Carriage Bolt, 1/2”-13x7”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>63957</td>
<td>2</td>
<td>Hex Nut, 1/2”-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>65958</td>
<td>1</td>
<td>Grounding Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>62335</td>
<td>2</td>
<td>Self-threading Screw, 10-24x5/8”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>63979</td>
<td>2</td>
<td>Battery Strap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>63638</td>
<td>1</td>
<td>Metal Chassis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>63620</td>
<td>2</td>
<td>Self-threading Screw, 8-32x.375”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>63967</td>
<td>1</td>
<td>EMS with Harness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>63964</td>
<td>2</td>
<td>Fuse, 10A, 3AB Fast Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>63963</td>
<td>2</td>
<td>Wire Nut, Silicone Filled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1</td>
<td>Current Setting Resistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>65947</td>
<td>1</td>
<td>Fixture Wire, 3 Conductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1</td>
<td>Light Fixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1</td>
<td>Controller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>Zip Tie (not shown)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Place Panel Face Down - Protect the Glass!

2. Secure Panel Brackets to Panel Frame

x 4

Insert Ground Washer x 4
3

Tighten all Nuts

4

Secure Panel Cables with Zip Tie
5
Place Chassis on Wood Supports

6
Insert Cage Nuts

x 4
7 Insert Bolts into Chassis

8 Insert Controller into Chassis
9. Attach Grounding Block

10. Insert Controller Ground Wire into Ground Block
Insert Only Carmanah Provided Resistor

Insert Battery Strap into Chassis

x 2
13 Place Zip Ties in Bucket

x 3

14 Adhere Anti-Skid Pads to Bucket

x 2
Lower Bucket onto Chassis and Feed Battery Straps
Feed Optional Ground Wire (Not Supplied, Max 4AWG)

Feed Fixture Wire
18 Connect Fixture Wire

19 Feed Battery Harness Through Bucket
Secure Wires with Zip Ties

Feed Panel Harness Through Bucket
Ready for Batteries

Check for Correct Polarity!

DANGER
ELECTRICAL SHOCK HAZARD

© 2012, Carmanah Technologies Corporation. EG320InstallGuide_65897RevA
Connect Battery Strap - Must be Tight!

Grease Battery Terminals x 4

DANGER
ELECTRICAL SHOCK HAZARD
Connect Battery Harness

DANGER
ELECTRICAL SHOCK HAZARD

x 4
Pre-Test Fixture and Wiring

- Green: From Engine
- Orange: From Engine
- Brown: Through Fixture

a. Pre-Test Fixture
b. Connection Diagram
c. Wiring Connection
d. Testing Button Operation

e. Test Button Operation

f. Remove Fuse when Finished Testing

© 2012, Carmanah Technologies Corporation. EG320InstallGuide_65897RevA
28
Place Panel Assembly on Chassis

29
Attach Panel Assembly to Chassis

x 4
30

Connect Lift Straps
Leave PV Cables Disconnected!

31

Lift System off Ground and Over Pole

Remove Fuse
Before Lifting
32
Feed Fixture Wire

33
Feed Optional Ground Wire
Point Panels South if in Northern Hemisphere

Point Panels North if in Southern Hemisphere
36

Tighten Chassis Nuts

60 ft-lb
8.3 kg-m

37

Install Fixture
Insert Fuse
Connect PV Cables

Program and Test System

Avoid Programming in Direct Sunlight

TEST
SEND
HOLD TO TEST OR SEND

HOLD BUTTON FOR > 3 sec!

TEST
SEND
HOLD TO TEST OR SEND

HOLD BUTTON FOR > 3 sec!
ANEXO C

COSTOS
PRECIOS DE LA ENERGÍA, COMPARACIÓN LED Y ADITIVOS METÁLICOS

Tabla de costo de energía para las luminarias con tarifa 5A (2014-2015) precio diciembre 2015

<table>
<thead>
<tr>
<th>Media Tensión</th>
<th>$2.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja Tensión</td>
<td>$2.92</td>
</tr>
</tbody>
</table>

Tomando en cuenta que se usara media tensión y se tomarán como 13 horas diarias el funcionamiento de la iluminación, tenemos:

\[\text{Costo de la energía} = \frac{(\text{tarifa})(w)(hrs.)}{1000} \]

<table>
<thead>
<tr>
<th></th>
<th>Aditivos metálicos 175 Watts</th>
<th>LED´s 42 Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>Día</td>
<td>5.58</td>
<td>1.34</td>
</tr>
<tr>
<td>Semana</td>
<td>39.06</td>
<td>9.38</td>
</tr>
<tr>
<td>Mes</td>
<td>167.42</td>
<td>40.18</td>
</tr>
<tr>
<td>Bimestre</td>
<td>334.83</td>
<td>80.36</td>
</tr>
<tr>
<td>Semestre</td>
<td>1,004.50</td>
<td>241.08</td>
</tr>
<tr>
<td>Año</td>
<td>2,036.91</td>
<td>488.86</td>
</tr>
<tr>
<td>20 años</td>
<td>61,107.30</td>
<td>14,665.80</td>
</tr>
</tbody>
</table>

Donde lo anterior es referido a un solo luminario, tomando en cuenta el total de luminarios del sistema, tenemos:

<table>
<thead>
<tr>
<th></th>
<th>Aditivos metálicos 175 Watts</th>
<th>LED´s 42 Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>Día</td>
<td>742.22</td>
<td>262.51</td>
</tr>
<tr>
<td>Semana</td>
<td>5,195.52</td>
<td>1,837.57</td>
</tr>
<tr>
<td>Mes</td>
<td>22,266.49</td>
<td>7,875.31</td>
</tr>
<tr>
<td>Bimestre</td>
<td>44,532.99</td>
<td>15,750.61</td>
</tr>
<tr>
<td>Semestre</td>
<td>133,598.97</td>
<td>47,251.84</td>
</tr>
<tr>
<td>Año</td>
<td>270,909.01</td>
<td>95,816.24</td>
</tr>
<tr>
<td>30 años</td>
<td>8,127,270.3</td>
<td>2,874,487.2</td>
</tr>
<tr>
<td>Partida</td>
<td>Descripción</td>
<td>Cantidad</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Panel solar de 99.2 x 164 cms.</td>
<td>196</td>
</tr>
<tr>
<td>2</td>
<td>luminario XSP2 de 10 LED’s de 42w de alta eficiencia, 101.1 lumenes x watts</td>
<td>196</td>
</tr>
<tr>
<td>3</td>
<td>batería de malla de fibra de vidrio de 2200 ciclos hasta una profundidad de descarga de 20 % a 20°C para 13 hrs</td>
<td>392</td>
</tr>
<tr>
<td>4</td>
<td>Poste cónico circular de 5.5 mts de altura, fabricado con lamina de acero A-36 en calibre 3/16 in, terminado en galvanizado por inmersión en caliente</td>
<td>196</td>
</tr>
<tr>
<td>5</td>
<td>Brazo tipo (I) con percha para poste metálico de 1.22 m x 1 1/2 de diámetro acabado por en galvanizado por inmersión en caliente</td>
<td>196</td>
</tr>
<tr>
<td>6</td>
<td>Juego de 4 anclas de 1 in de diámetro por un metro de longitud con herrajes, terminadas por galvanizadas por inmersión en caliente</td>
<td>196</td>
</tr>
<tr>
<td>7</td>
<td>base de concreto</td>
<td>196</td>
</tr>
<tr>
<td>8</td>
<td>Proyecto de ingeniería</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>unidad</th>
<th>Precio unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>1</td>
<td>Mano de obra de instalación por unidad</td>
<td>196</td>
<td></td>
<td>2,923.20</td>
<td>572,947.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Divisa</td>
<td>M.N.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>572,947.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I.V.A.</td>
<td>91,671.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>664,618.75</td>
</tr>
</tbody>
</table>
Aditivos Metálicos

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>1</td>
<td>Lámpara aditivos metálicos 175 watts</td>
<td>133</td>
<td>Pza.</td>
<td>250.00</td>
<td>33,250.00</td>
</tr>
<tr>
<td>2</td>
<td>Balastro solar basic 220v</td>
<td>133</td>
<td>Pza.</td>
<td>600.00</td>
<td>79,800.00</td>
</tr>
<tr>
<td>3</td>
<td>Luminario con:</td>
<td>133</td>
<td>Pza.</td>
<td>1,700.00</td>
<td>226,100.00</td>
</tr>
<tr>
<td></td>
<td>- Carcasa y gatillo de seguridad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reflectores de cristal prismático</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reflectores de lámpara de aluminio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Porta lámpara E39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Base para fotocelda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Entrada de brazo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inversor</td>
<td>133</td>
<td>Pza.</td>
<td>5,000.00</td>
<td>665,000.00</td>
</tr>
<tr>
<td>5</td>
<td>Fotocelda</td>
<td>133</td>
<td>Pza.</td>
<td>50.00</td>
<td>6,650.00</td>
</tr>
<tr>
<td>6</td>
<td>Panel solar</td>
<td>266</td>
<td>Pza.</td>
<td>5,674.72</td>
<td>1,509,475.52</td>
</tr>
<tr>
<td>7</td>
<td>Batería</td>
<td>532</td>
<td>Pza.</td>
<td>6,844.00</td>
<td>3,641,008.00</td>
</tr>
<tr>
<td>8</td>
<td>Poste cóncico circular</td>
<td>133</td>
<td>Pza.</td>
<td>4,555.32</td>
<td>605,857.56</td>
</tr>
<tr>
<td>9</td>
<td>Brazo con percha para poste metálico</td>
<td>133</td>
<td>Pza.</td>
<td>285.82</td>
<td>38,014.06</td>
</tr>
<tr>
<td>10</td>
<td>Juego de 4 anclas con herrajes</td>
<td>133</td>
<td>Pza.</td>
<td>857.47</td>
<td>114,043.51</td>
</tr>
<tr>
<td>11</td>
<td>Base de concreto</td>
<td>133</td>
<td>Pza.</td>
<td>5,750.00</td>
<td>764,750.00</td>
</tr>
<tr>
<td>12</td>
<td>Proyecto de ingeniería</td>
<td></td>
<td></td>
<td></td>
<td>1,009,108.36</td>
</tr>
</tbody>
</table>

Divisa
- M.N.

Subtotal
- 7,683,948.65

I.V.A.
- 1,229,431.78

Total
- 8,913,380.43

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>unidad</th>
<th>Precio unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>1</td>
<td>Mano de obra de instalación por unidad</td>
<td>133</td>
<td></td>
<td>2,923.20</td>
<td>388,785.60</td>
</tr>
</tbody>
</table>

Divisa
- M.N.

Subtotal
- 388,785.60

I.V.A.
- 62,205.70

Total
- 450,991.30
Proyecto de ingeniería

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>1</td>
<td>Trabajo Ing. Electricista</td>
<td>1276</td>
<td>horas</td>
<td>661.2</td>
<td>843,691.20</td>
</tr>
<tr>
<td>2</td>
<td>Trabajo Ing. civil</td>
<td>23</td>
<td>horas</td>
<td>661.2</td>
<td>15,207.60</td>
</tr>
<tr>
<td>3</td>
<td>Licenciado</td>
<td>224</td>
<td>horas</td>
<td>634.375</td>
<td>142,100.00</td>
</tr>
<tr>
<td>4</td>
<td>2 computadoras</td>
<td>834</td>
<td>horas</td>
<td>5.8</td>
<td>4,837.20</td>
</tr>
<tr>
<td>5</td>
<td>impresiones</td>
<td>460</td>
<td>pza.</td>
<td>1.16</td>
<td>533.60</td>
</tr>
<tr>
<td>6</td>
<td>copias</td>
<td>1262</td>
<td>pza.</td>
<td>0.58</td>
<td>731.96</td>
</tr>
<tr>
<td>7</td>
<td>plumas</td>
<td>26</td>
<td>pza.</td>
<td>5.8</td>
<td>150.80</td>
</tr>
<tr>
<td>8</td>
<td>teléfono</td>
<td>8</td>
<td>mes</td>
<td>232</td>
<td>1,856.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,009,108.36</td>
</tr>
</tbody>
</table>
Mantenimiento.

Mantenimiento led a 30 años

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>precio unitario</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pesos ($)</td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>1</td>
<td>Batería de fibra de vidrio</td>
<td>1960</td>
<td>Pza.</td>
<td>6,844.00</td>
<td>13,414,240.00</td>
</tr>
<tr>
<td>2</td>
<td>Lámpara led</td>
<td>392</td>
<td>Pza.</td>
<td>48,136.98</td>
<td>18,869,697.73</td>
</tr>
</tbody>
</table>

Divisa: M.N.
Subtotal: 32,283,937.73
I.V.A: 5,165,430.04
Total: 37,449,367.76

Mano de obra

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Precio unitario</th>
<th>Jornadas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pesos ($)</td>
<td></td>
<td>Pesos ($)</td>
</tr>
<tr>
<td>1</td>
<td>Salario de ayudante general de electricista</td>
<td>día</td>
<td>200.00</td>
<td>12</td>
<td>2,400.00</td>
</tr>
<tr>
<td>2</td>
<td>Grúa con canastilla y operador</td>
<td>día</td>
<td>800.00</td>
<td>12</td>
<td>9,600.00</td>
</tr>
<tr>
<td>3</td>
<td>Supervisor</td>
<td>día</td>
<td>250.00</td>
<td>12</td>
<td>3,000.00</td>
</tr>
</tbody>
</table>

Subtotal: 15,000.00
I.V.A: 2,400.00
Total: 17,400.00

Debido a que el mantenimiento del sistema con tecnología Led tiene un mantenimiento cada 5 años, se multiplicará el total por los 4 años restantes, dando un total de:

| total de mano de obra en 30 años | $69,600.00 |

| total de mantenimiento en 30 años | $37,518,967.76 |
Debido a que el mantenimiento en aditivos metálicos se llevará a cabo cada año y medio, tenemos un total de:

<table>
<thead>
<tr>
<th>Partida</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Precio unitario</th>
<th>Jornadas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Salario de ayudante general de electricista</td>
<td>día</td>
<td>200.00</td>
<td>9</td>
<td>1,800.00</td>
</tr>
<tr>
<td>2</td>
<td>Grúa con canastilla y operador</td>
<td>día</td>
<td>800.00</td>
<td>9</td>
<td>7,200.00</td>
</tr>
<tr>
<td>3</td>
<td>Supervisor</td>
<td>día</td>
<td>250.00</td>
<td>9</td>
<td>2,250.00</td>
</tr>
</tbody>
</table>

Divisa M.N.
Subtotal 11,250.00
I.V.A 1,800.00
Total 3,600.00

mano de obra a 30 años $ 72,000.00

Total de mantenimiento a 30 años $ 21,224,405.12
¿QUÉ ES LA HUELLA DE CARBONO? La huella de carbono es una de las formas más fácil que existen de medir el impacto o la marca que deja una persona sobre el planeta en su vida cotidiana. Es un recuento de las emisiones de dióxido de carbono (CO2), que son liberadas a la atmósfera debido a las actividades cotidianas del ser humano o a la comercialización de un producto. Por tal motivo la huella de carbono es la medida del impacto que provocan nuestras actividades en el medio ambiente y se determina según la cantidad de emisiones de GEI producidos, medidos en unidades de dióxido de carbono equivalente. Este análisis abarca todas las actividades del ciclo de vida de un producto (desde la adquisición de las materias primas hasta su gestión como residuo) permitiendo a los consumidores decidir qué alimentos comprar en base a la contaminación generada como resultado de los procesos por los que ha pasado.

OBJETIVO DE LA HUELLA DE CARBONO La Huella de Carbono busca calcular la cantidad de GEI que son emitidos directa o indirectamente a la atmósfera cada vez que se realiza una acción determinada y que las empresas puedan reducir los niveles de contaminación mediante un cálculo estándarizado de las emisiones durante los procesos productivos. El certificado de la huella de carbono no es obligatorio, pero muchas empresas están interesadas en que sus productos lleven la etiqueta que certifica los valores de CO2 de sus productos y de esta manera los consumidores puedan optar por productos más sanos y menos contaminantes.

BENEFICIOS DE LA HUELLA DE CARBONO Al identificar las fuentes de emisiones de GEI de un producto, en todo el proceso productivo, permite definir mejores objetivos, estrategias de reducción de emisiones más efectivas y ahorros de costo, debido al mejor conocimiento de los puntos críticos para la reducción de emisiones. La Huella de Carbono puede fortalecer las relaciones entre compañías y proveedores, particularmente si esto implica oportunidades de ahorros en los costos sobre de la cadena de proveedores. Al informar la huella de carbono de un producto, se genera un compromiso por parte de los consumidores por reducir su propio impacto sobre el cambio climático y además se crea conciencia por parte de los países desarrollados a diferenciar entre productos basado en su compromiso de reducir emisiones.

1 kWh de electricidad = 510 gr. CO₂
Huella de carbono para aditivos metálicos

- se calculan los watts por la lámpara

<table>
<thead>
<tr>
<th>Watts por lámpara</th>
<th>horas</th>
<th>Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>13</td>
<td>2,275.00</td>
</tr>
</tbody>
</table>

- Se calculan los kilowatts usados en el sistema completo

<table>
<thead>
<tr>
<th>kWh/ lámpara</th>
<th>sistemas</th>
<th>Total kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.275</td>
<td>133</td>
<td>302.575</td>
</tr>
</tbody>
</table>

- Se realiza el calculo de la contaminación al día

<table>
<thead>
<tr>
<th>Kwh</th>
<th>Kg. CO2</th>
<th>Kg CO2/ dia</th>
</tr>
</thead>
<tbody>
<tr>
<td>302.575</td>
<td>0.51</td>
<td>154.31</td>
</tr>
</tbody>
</table>

- Se hace al calculo de la contaminación al año

<table>
<thead>
<tr>
<th>Kg CO2/dia</th>
<th>Dias al año</th>
<th>Kg CO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>154.31325</td>
<td>365</td>
<td>56,324.34</td>
</tr>
</tbody>
</table>

- Se hace el calculo de la contaminación a 30 años que es el tiempo propuesto a causa de la vida útil de un panel solar.

<table>
<thead>
<tr>
<th>Kg CO2/año</th>
<th>Años proyecto</th>
<th>Kg CO2 a 30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,324.34</td>
<td>30</td>
<td>1,689,730.09</td>
</tr>
</tbody>
</table>
Huella de carbono para LED

- se calculan los watts por la lámpara

<table>
<thead>
<tr>
<th>Watts por lámpara</th>
<th>horas</th>
<th>Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>585.00</td>
</tr>
</tbody>
</table>

- Se calculan los kilowatts usados en el sistema completo

<table>
<thead>
<tr>
<th>kWh/ lámpara</th>
<th>sistemas</th>
<th>Total kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>196</td>
<td>114.66</td>
</tr>
</tbody>
</table>

- Se realiza el calculo de la contaminación al día

<table>
<thead>
<tr>
<th>Kwh</th>
<th>Kg. CO2</th>
<th>Kg CO2/ día</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.66</td>
<td>0.51</td>
<td>58.48</td>
</tr>
</tbody>
</table>

- Se hace el calculo de la contaminación al año

<table>
<thead>
<tr>
<th>Kg CO2/día</th>
<th>Días al año</th>
<th>Kg CO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.48</td>
<td>365</td>
<td>21,343.96</td>
</tr>
</tbody>
</table>

- Se hace el calculo de la contaminación a 30 años que es el tiempo propuesto a causa de la vida útil de un panel solar.

<table>
<thead>
<tr>
<th>Kg CO2/año</th>
<th>Años proyecto</th>
<th>Kg CO2 a 30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,343.96</td>
<td>30</td>
<td>640,318.77</td>
</tr>
</tbody>
</table>